【PostgreSQL 】PostgreSQL 15对distinct的优化

虚幻大学 xuhss 174℃ 0评论

? 优质资源分享 ?

学习路线指引(点击解锁) 知识定位 人群定位
? Python实战微信订餐小程序 ? 进阶级 本课程是python flask+微信小程序的完美结合,从项目搭建到腾讯云部署上线,打造一个全栈订餐系统。
?Python量化交易实战? 入门级 手把手带你打造一个易扩展、更安全、效率更高的量化交易系统

示例表

?

| 12345678910111213 | table t_ex;c1 | c2----+----2 | B4 | C6 | A2 | C4 | B6 | B2 | A4 | B6 | C2 | C |

以下SQL语句有序地返回"c1"列中唯一值:

?

| 1 | select distinct on(c1) * from abce; |

对于c2列,会根据c1的唯一性,从表中找到的第一个值。

?

| 1234567 | postgres=# select distinct on(c1) * from abce;c1 | c2 ----+----2  | B4  | B6  | B(3 rows) |

以下SQL语句有序地返回"c2"列中唯一值:

?

| 1234567 | # select distinct on(c2) * from abce;c1 | c2 ----+----6  | A2  | B4  | C(3 rows) |

最后从表中返回唯一性的记录

?

| 123456789101112 | postgres=# select distinct * from abce;c1 | c2 ----+----6  | C4  | C4  | B2  | C2  | A6  | B6  | A2  | B(8 rows) |

那么你可能会问,在postgresql15中,distinct的增强体现在哪些方面呢?答案是:并发

在此之前,只有一个cpu或进程来计算不同的值。在postgresql15中,可以使用并发,使用多个cpu进程。这一特性涉及好几个参数,但是,我们只聚焦在参数max_parallel_workers_per_gather。

为了演示这个改进,我们创建三个表,没有索引,填充大约5000000条记录。注意,表的列数分别为1,5,10。

?

| 12345678910111213141516171819202122232425262728 | Table "public.t1"Column |  Type   | Collation | Nullable | Default--------+---------+-----------+----------+---------c1     | integer |           |          |  Table "public.t5"Column |         Type          | Collation | Nullable | Default--------+-----------------------+-----------+----------+---------c1     | integer               |           |          |c2     | integer               |           |          |c3     | integer               |           |          |c4     | integer               |           |          |c5     | character varying(40) |           |          | Table "public.t10"Column |         Type          | Collation | Nullable | Default--------+-----------------------+-----------+----------+---------c1     | integer               |           |          |c2     | integer               |           |          |c3     | integer               |           |          |c4     | integer               |           |          |c5     | character varying(40) |           |          |c6     | integer               |           |          |c7     | integer               |           |          |c8     | integer               |           |          |c9     | integer               |           |          |c10    | integer               |           |          | |

  

?

| 1234567891011121314151617181920212223242526272829 | insert into t1 select generate_series(1,500); insert into t5select   generate_series(1,500),generate_series(500,1000),generate_series(1000,1500),(random()*100)::int,'aofjaofjwaoeev$#^&ETHE#@#Fasrhk!!@%Q@';  insert into t10select   generate_series(1,500),generate_series(500,1000),generate_series(1000,1500),(random()*100)::int,'aofjaofjwaoeev$#^&ETHE#@#Fasrhk!!@%Q@',generate_series(1500,2000),generate_series(2500,3000),generate_series(3000,3500),generate_series(3500,4000),generate_series(4000,4500);  List of relationsSchema | Name | Type  |  Owner   | Persistence | Access method | Size  |--------+------+-------+----------+-------------+---------------+--------+public | t1   | table | postgres | permanent   | heap          | 173 MB |public | t10  | table | postgres | permanent   | heap          | 522 MB |public | t5   | table | postgres | permanent   | heap          | 404 MB | |

  

下一步是将生成的数据dump到以下的版本中:

?

| 12345678 | PG VERSIONpg96pg10pg11pg12pg13pg14pg15 |

  

数据导入后,使用下面的脚本生成结果:

?

| 123456789101112 | #!/bin/bashfor v in 96 10 11 12 13 14 15do# run the explain analzye 5X in order to derive consistent numbersfor u in $(seq 1 5)doecho "--- explain analyze: pg${v}, ${u}X ---"psql -p 100$v db01 -c "explain analyze select distinct on (c1) * from t1" > t1.pg$v.explain.txtpsql -p 100$v db01 -c "explain analyze select distinct * from t5" > t5.pg$v.explain.txtpsql -p 100$v db01 -c "explain analyze select distinct * from t10" > t10.pg$v.explain.txtdonedone |

  

以下是结果比较,可以看到表越大,性能收获越大。

| PG VERSION | 1 column (t1), ms | 5 column (t5), ms | 10 column (t10), ms |
| pg96 | 3,382 | 9,743 | 20,026 |
| pg10 | 2,004 | 5,746 | 13,241 |
| pg11 | 1,932 | 6,062 | 14,295 |
| pg12 | 1,876 | 5,832 | 13,214 |
| pg13 | 1,973 | 2,358 | 3,135 |
| pg14 | 1,948 | 2,316 | 2,909 |
| pg15 | 1,439 | 1,025 | 1,245 |

764761 20220716143747003 642151134 - 【PostgreSQL 】PostgreSQL 15对distinct的优化
来看看不同版本之间的执行计划:

?

| 123456789 | PG96 QUERY PLAN, TABLE T1-------------------------------------------------------------------------------Unique  (cost=765185.42..790185.42 rows=500 width=4) (actual time=2456.805..3381.230 rows=500 loops=1)->  Sort  (cost=765185.42..777685.42 rows=5000000 width=4) (actual time=2456.804..3163.600 rows=5000000 loops=1)Sort Key: c1Sort Method: external merge  Disk: 68432kB->  Seq Scan on t1  (cost=0.00..72124.00 rows=5000000 width=4) (actual time=0.055..291.523 rows=5000000 loops=1)Planning time: 0.161 msExecution time: 3381.662 ms |

  

?

| 12345678910111213 | PG15 QUERY PLAN, TABLE T1---------------------------------------------------------------------------Unique  (cost=557992.61..582992.61 rows=500 width=4) (actual time=946.556..1411.421 rows=500 loops=1)->  Sort  (cost=557992.61..570492.61 rows=5000000 width=4) (actual time=946.554..1223.289 rows=5000000 loops=1)Sort Key: c1Sort Method: external merge  Disk: 58720kB->  Seq Scan on t1  (cost=0.00..72124.00 rows=5000000 width=4) (actual time=0.038..259.329 rows=5000000 loops=1)Planning Time: 0.229 msJIT:Functions: 1Options: Inlining true, Optimization true, Expressions true, Deforming trueTiming: Generation 0.150 ms, Inlining 31.332 ms, Optimization 6.746 ms, Emission 6.847 ms, Total 45.074 msExecution Time: 1438.683 ms |

 

当DISTINCT列的数量增加时,真正的差异出现了,如查询表 t10 所示。 可以看到并行化在起作用!

?

| 123456789 | PG96 QUERY PLAN, TABLE T10-------------------------------------------------------------------------------------------Unique  (cost=1119650.30..1257425.30 rows=501000 width=73) (actual time=14257.801..20024.271 rows=50601 loops=1)->  Sort  (cost=1119650.30..1132175.30 rows=5010000 width=73) (actual time=14257.800..19118.145 rows=5010000 loops=1)Sort Key: c1, c2, c3, c4, c5, c6, c7, c8, c9, c10Sort Method: external merge  Disk: 421232kB->  Seq Scan on t10  (cost=0.00..116900.00 rows=5010000 width=73) (actual time=0.073..419.701 rows=5010000 loops=1)Planning time: 0.352 msExecution time: 20025.956 ms |

  

?

| 12345678910111213141516171819 | PG15 QUERY PLAN, TABLE T10------------------------------------------------------------------------------------------- HashAggregate  (cost=699692.77..730144.18 rows=501000 width=73) (actual time=1212.779..1232.667 rows=50601 loops=1)Group Key: c1, c2, c3, c4, c5, c6, c7, c8, c9, c10Planned Partitions: 16  Batches: 17  Memory Usage: 8373kB  Disk Usage: 2976kB->  Gather  (cost=394624.22..552837.15 rows=1002000 width=73) (actual time=1071.280..1141.814 rows=151803 loops=1)Workers Planned: 2Workers Launched: 2->  HashAggregate  (cost=393624.22..451637.15 rows=501000 width=73) (actual time=1064.261..1122.628 rows=50601 loops=3)Group Key: c1, c2, c3, c4, c5, c6, c7, c8, c9, c10Planned Partitions: 16  Batches: 17  Memory Usage: 8373kB  Disk Usage: 15176kBWorker 0:  Batches: 17  Memory Usage: 8373kB  Disk Usage: 18464kBWorker 1:  Batches: 17  Memory Usage: 8373kB  Disk Usage: 19464kB->  Parallel Seq Scan on t10  (cost=0.00..87675.00 rows=2087500 width=73) (actual time=0.072..159.083 rows=1670000 loops=3)Planning Time: 0.286 msJIT:Functions: 31Options: Inlining true, Optimization true, Expressions true, Deforming trueTiming: Generation 3.510 ms, Inlining 123.698 ms, Optimization 200.805 ms, Emission 149.608 ms, Total 477.621 msExecution Time: 1244.556 ms |

提高性能:postgres运行时参数max_parallel_workers_per_gather来提高性能。新初始化的集群中的默认值为2。如下表所示,由于测试硬件本身的能力有限,它很快成为收益递减的原因。

​​在postgresql 15中:

| max_parallel_workers_per_gather | 1 column (t1) | 5 column (t5) | 10 column (t10) |
| 2 | 1,439 | 1,025 | 1,245 |
| 3 | 1,464 | 875 | 1,013 |
| 4 | 1,391 | 858 | 977 |
| 6 | 1,401 | 846 | 1,045 |
| 8 | 1,428 | 856 | 993
  |

 

764761 20220716145246810 509721399 - 【PostgreSQL 】PostgreSQL 15对distinct的优化

关于索引:如本查询计划中所示,应用索引时未实现性能改进。

PG15,表T10,max_parallel_workers_per_gather=4:

?

| 1234567891011 | QUERY PLAN -----------------------------------------------------------------------------------Unique  (cost=0.43..251344.40 rows=501000 width=73) (actual time=0.060..1240.729 rows=50601 loops=1)-> Index Only Scan using t10_c1_c2_c3_c4_c5_c6_c7_c8_c9_c10_idx on t10  (cost=0.43..126094.40 rows=5010000 width=73) (actual time=0.058..710.780 rows=5010000 loops=1)Heap Fetches: 582675Planning Time: 0.596 msJIT:Functions: 1Options: Inlining false, Optimization false, Expressions true, Deforming trueTiming: Generation 0.262 ms, Inlining 0.000 ms, Optimization 0.122 ms, Emission 2.295 ms, Total 2.679 msExecution Time: **1249.391 ms** |

  

跨多个CPU运行DISTINCT是性能能力的一大进步。但是请记住,当增加max_parallel_workers_per_gather的数量并接近硬件的限制时,性能下降的风险。在正常情况下,查询计划器可能会决定使用索引而不是运行并行工作程序。 解决此问题的一种方法是考虑禁用运行时参数,例如enable_indexonlyscan和enable_indexscan。 最后,不要忘记运行EXPLAIN ANALYZE以了解发生了什么。

转载请注明:xuhss » 【PostgreSQL 】PostgreSQL 15对distinct的优化

喜欢 (0)

您必须 登录 才能发表评论!