源码解析springbatch的job是如何运行的?

虚幻大学 xuhss 194℃ 0评论

? 优质资源分享 ?

学习路线指引(点击解锁) 知识定位 人群定位
? Python实战微信订餐小程序 ? 进阶级 本课程是python flask+微信小程序的完美结合,从项目搭建到腾讯云部署上线,打造一个全栈订餐系统。
?Python量化交易实战? 入门级 手把手带你打造一个易扩展、更安全、效率更高的量化交易系统

202208-源码解析springbatch的job是如何运行的?

注,本文中的demo代码节选于图书《Spring Batch批处理框架》的配套源代码,并做并适配springboot升级版本,完全开源。

SpringBatch的背景和用法,就不再赘述了,默认本文受众都使用过batch框架。
本文仅讨论普通的ChunkStep,分片/异步处理等功能暂不讨论。

1. 表结构

Spring系列的框架代码,大多又臭又长,让人头晕。先列出整体流程,再去看源码。顺带也可以了解存储表结构。

  1. 每一个jobname,加运行参数的MD5值,被定义为一个job_instance,存储在batch_job_instance表中;
  2. job_instance每次运行时,会创建一个新的job_execution,存储在batch_job_execution / batch_job_execution_context 表中;
    1. 扩展:任务重启时,如何续作? 答,判定为任务续作,创建新的job_execution时,会使用旧job_execution的运行态ExecutionContext(通俗讲,火车出故障只换了车头,车厢货物不变。)
  3. job_execution会根据job排程中的step顺序,逐个执行,逐个转化为step_execution,并存储在batch_step_execution / batch_step_execution_context表中
  4. 每个step在执行时,会维护step运行状态,当出现异常或者整个step清单执行完成,会更新job_execution的状态
  5. 在每个step执行前后、job_execution前后,都会通知Listener做回调。

框架使用的表


|  | batch\_job\_instance |
|  | batch\_job\_execution |
|  | batch\_job\_execution\_context |
|  | batch\_job\_execution\_params |
|  | batch\_step\_execution |
|  | batch\_step\_execution\_context |
|  | batch\_job\_seq |
|  | batch\_step\_execution\_seq |
|  | batch\_job\_execution\_seq |

2. API入口

先看看怎么调用启动Job的API,看起来非常简单,传入job信息和参数即可


|  | @Autowired |
|  | @Qualifier("billJob") |
|  | private Job job; |
|  |  |
|  | @Test |
|  | public void billJob() throws Exception { |
|  | JobParameters jobParameters = new JobParametersBuilder() |
|  |  .addLong("currentTimeMillis", System.currentTimeMillis()) |
|  |  .addString("batchNo","2022080402") |
|  |  .toJobParameters(); |
|  | JobExecution result = jobLauncher.run(job, jobParameters); |
|  |  System.out.println(result.toString()); |
|  |  |
|  |  Thread.sleep(6000); |
|  |  } |

|  |  |
|  | <batch:job id="billJob"> |
|  | <batch:step id="billStep"> |
|  | <batch:tasklet transaction-manager="transactionManager"> |
|  | <batch:chunk reader="csvItemReader" writer="csvItemWriter" processor="creditBillProcessor" commit-interval="3"> |
|  | batch:chunk> |
|  | batch:tasklet> |
|  | batch:step> |
|  | batch:job> |

org.springframework.batch.core.launch.support.SimpleJobLauncher#run


|  | // 简化部分代码(参数检查、log日志) |
|  | @Override |
|  | public JobExecution run(final Job job, final JobParameters jobParameters){ |
|  | final JobExecution jobExecution; |
|  | JobExecution lastExecution = jobRepository.getLastJobExecution(job.getName(), jobParameters); |
|  | // 上次执行存在,说明本次请求是重启job,先做检查 |
|  | if (lastExecution != null) { |
|  | if (!job.isRestartable()) { |
|  | throw new JobRestartException("JobInstance already exists and is not restartable"); |
|  |  } |
|  | /* 检查stepExecutions的状态 |
|  |  * validate here if it has stepExecutions that are UNKNOWN, STARTING, STARTED and STOPPING |
|  |  * retrieve the previous execution and check |
|  |  */ |
|  | for (StepExecution execution : lastExecution.getStepExecutions()) { |
|  | BatchStatus status = execution.getStatus(); |
|  | if (status.isRunning() || status == BatchStatus.STOPPING) { |
|  | throw new JobExecutionAlreadyRunningException("A job execution for this job is already running: " |
|  |  + lastExecution); |
|  |  } else if (status == BatchStatus.UNKNOWN) { |
|  | throw new JobRestartException( |
|  | "Cannot restart step [" + execution.getStepName() + "] from UNKNOWN status. "); |
|  |  } |
|  |  } |
|  |  } |
|  | // Check jobParameters |
|  |  job.getJobParametersValidator().validate(jobParameters); |
|  | // 创建JobExecution 同一个job+参数,只能有一个Execution执行器 |
|  |  jobExecution = jobRepository.createJobExecution(job.getName(), jobParameters); |
|  | try { |
|  | // SyncTaskExecutor 看似是异步,实际是同步执行(可扩展) |
|  |  taskExecutor.execute(new Runnable() { |
|  | @Override |
|  | public void run() { |
|  | try { |
|  | // 关键入口,请看[org.springframework.batch.core.job.AbstractJob#execute] |
|  |  job.execute(jobExecution); |
|  | if (logger.isInfoEnabled()) { |
|  | Duration jobExecutionDuration = BatchMetrics.calculateDuration(jobExecution.getStartTime(), jobExecution.getEndTime()); |
|  |  } |
|  |  } |
|  | catch (Throwable t) { |
|  |  rethrow(t); |
|  |  } |
|  |  } |
|  | private void rethrow(Throwable t) { |
|  | // 省略各类抛异常 |
|  | throw new IllegalStateException(t); |
|  |  } |
|  |  }); |
|  |  } |
|  | catch (TaskRejectedException e) { |
|  | // 更新job\_execution的运行状态 |
|  |  jobExecution.upgradeStatus(BatchStatus.FAILED); |
|  | if (jobExecution.getExitStatus().equals(ExitStatus.UNKNOWN)) { |
|  |  jobExecution.setExitStatus(ExitStatus.FAILED.addExitDescription(e)); |
|  |  } |
|  |  jobRepository.update(jobExecution); |
|  |  } |
|  | return jobExecution; |
|  | } |
|  |  |

3. 深入代码流程

简单看看API入口,子类划分较多,继续往后看

总体代码流程

  1. org.springframework.batch.core.launch.support.SimpleJobLauncher#run 入口api,构建jobExecution
  2. org.springframework.batch.core.job.AbstractJob#execute 对jobExecution进行执行、listener的前置处理
  3. FlowJob#doExecute -> SimpleFlow#start 按顺序逐个处理Step、构建stepExecution
  4. JobFlowExecutor#executeStep -> SimpleStepHandler#handleStep -> AbstractStep#execute 执行stepExecution
  5. TaskletStep#doExecute 通过RepeatTemplate,调用TransactionTemplate方法,在事务中执行
    1. 内部类TaskletStep.ChunkTransactionCallback#doInTransaction
  6. 反复调起ChunkOrientedTasklet#execute 去执行read-process-writer方法,
    1. 通过自定义的Reader得到inputs,例如本文实现的是flatReader读取csv文件
    2. 遍历inputs,将item逐个传入,调用processor处理
    3. 调用writer,将outputs一次性写入
    4. 不同reader的实现内容不同,通过缓存读取的行数等信息,可做到分片、按数量处理chunk

JobExecution的处理过程

org.springframework.batch.core.job.AbstractJob#execute


|  |  |
|  | /** 运行给定的job,处理全部listener和DB存储的调用 |
|  | * Run the specified job, handling all listener and repository calls, and |
|  | * delegating the actual processing to {@link #doExecute(JobExecution)}. |
|  | * |
|  | * @see Job#execute(JobExecution) |
|  | * @throws StartLimitExceededException |
|  | * if start limit of one of the steps was exceeded |
|  | */ |
|  | @Ovrride |
|  | public final void execute(JobExecution execution) { |
|  |  |
|  | // 同步控制器,防并发执行 |
|  |  JobSynchronizationManager.register(execution); |
|  | // 计时器,记录耗时 |
|  | LongTaskTimer longTaskTimer = BatchMetrics.createLongTaskTimer("job.active", "Active jobs", |
|  |  Tag.of("name", execution.getJobInstance().getJobName())); |
|  |  LongTaskTimer.Sample longTaskTimerSample = longTaskTimer.start(); |
|  |  Timer.Sample timerSample = BatchMetrics.createTimerSample(); |
|  |  |
|  | try { |
|  | // 参数再次进行校验 |
|  |  jobParametersValidator.validate(execution.getJobParameters()); |
|  |  |
|  | if (execution.getStatus() != BatchStatus.STOPPING) { |
|  |  |
|  | // 更新db中任务状态 |
|  |  execution.setStartTime(new Date()); |
|  |  updateStatus(execution, BatchStatus.STARTED); |
|  | // 回调所有listener的beforeJob方法 |
|  |  listener.beforeJob(execution); |
|  |  |
|  | try { |
|  |  doExecute(execution); |
|  |  } catch (RepeatException e) { |
|  | throw e.getCause(); // 搞不懂这里包一个RepeatException 有啥用 |
|  |  } |
|  |  } else { |
|  | // 任务状态时BatchStatus.STOPPING,说明任务已经停止,直接改成STOPPED |
|  | // The job was already stopped before we even got this far. Deal |
|  | // with it in the same way as any other interruption. |
|  |  execution.setStatus(BatchStatus.STOPPED); |
|  |  execution.setExitStatus(ExitStatus.COMPLETED); |
|  |  } |
|  |  |
|  |  } catch (JobInterruptedException e) { |
|  | // 任务被打断 STOPPED |
|  |  execution.setExitStatus(getDefaultExitStatusForFailure(e, execution)); |
|  |  execution.setStatus(BatchStatus.max(BatchStatus.STOPPED, e.getStatus())); |
|  |  execution.addFailureException(e); |
|  |  } catch (Throwable t) { |
|  | // 其他原因失败 FAILED |
|  |  logger.error("Encountered fatal error executing job", t); |
|  |  execution.setExitStatus(getDefaultExitStatusForFailure(t, execution)); |
|  |  execution.setStatus(BatchStatus.FAILED); |
|  |  execution.addFailureException(t); |
|  |  } finally { |
|  | try { |
|  | if (execution.getStatus().isLessThanOrEqualTo(BatchStatus.STOPPED) |
|  |  && execution.getStepExecutions().isEmpty()) { |
|  | ExitStatus exitStatus = execution.getExitStatus(); |
|  | ExitStatus newExitStatus = |
|  |  ExitStatus.NOOP.addExitDescription("All steps already completed or no steps configured for this job."); |
|  |  execution.setExitStatus(exitStatus.and(newExitStatus)); |
|  |  } |
|  |  |
|  | // 计时器 计算总耗时 |
|  |  timerSample.stop(BatchMetrics.createTimer("job", "Job duration", |
|  |  Tag.of("name", execution.getJobInstance().getJobName()), |
|  |  Tag.of("status", execution.getExitStatus().getExitCode()) |
|  |  )); |
|  |  longTaskTimerSample.stop(); |
|  |  execution.setEndTime(new Date()); |
|  |  |
|  | try { |
|  | // 回调所有listener的afterJob方法 调用失败也不影响任务完成 |
|  |  listener.afterJob(execution); |
|  |  } catch (Exception e) { |
|  |  logger.error("Exception encountered in afterJob callback", e); |
|  |  } |
|  | // 写入db |
|  |  jobRepository.update(execution); |
|  |  } finally { |
|  | // 释放控制 |
|  |  JobSynchronizationManager.release(); |
|  |  } |
|  |  |
|  |  } |
|  |  |
|  | } |

3.2何时调用Reader?

在SimpleChunkProvider#provide中会分次调用reader,并将结果包装为Chunk返回。

其中有几个细节,此处不再赘述。

  1. 如何控制一次读取几个item?
  2. 如何控制最后一行读完就不读了?
  3. 如果需要跳过文件头的前N行,怎么处理?
  4. 在StepContribution中记录读取数量

|  | org.springframework.batch.core.step.item.SimpleChunkProcessor#process |
|  |  |
|  | @Nullable |
|  | @Override |
|  | public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception { |
|  |  |
|  | @SuppressWarnings("unchecked") |
|  |  Chunk *inputs = (Chunk*) chunkContext.getAttribute(INPUTS\_KEY);** |
|  | if (inputs == null) { |
|  |  inputs = chunkProvider.provide(contribution); |
|  | if (buffering) { |
|  |  chunkContext.setAttribute(INPUTS\_KEY, inputs); |
|  |  } |
|  |  } |
|  |  |
|  |  chunkProcessor.process(contribution, inputs); |
|  |  chunkProvider.postProcess(contribution, inputs); |
|  |  |
|  | // Allow a message coming back from the processor to say that we |
|  | // are not done yet |
|  | if (inputs.isBusy()) { |
|  |  logger.debug("Inputs still busy"); |
|  | return RepeatStatus.CONTINUABLE; |
|  |  } |
|  |  |
|  |  chunkContext.removeAttribute(INPUTS\_KEY); |
|  |  chunkContext.setComplete(); |
|  |  |
|  | if (logger.isDebugEnabled()) { |
|  |  logger.debug("Inputs not busy, ended: " + inputs.isEnd()); |
|  |  } |
|  | return RepeatStatus.continueIf(!inputs.isEnd()); |
|  |  |
|  |  } |

3.3何时调用Processor/Writer?

在RepeatTemplate和外围事务模板的包装下,通过SimpleChunkProcessor进行处理:

  1. 查出若干条数的items,打包为Chunk
  2. 遍历items,逐个item调用processor
    1. 通知StepListener,环绕处理调用before/after方法

|  | // 忽略无关代码... |
|  | @Override |
|  | public final void process(StepContribution contribution, Chunk *inputs)* throws Exception { |
|  |  |
|  | // 输入为空,直接返回If there is no input we don't have to do anything more |
|  | if (isComplete(inputs)) { |
|  | return; |
|  |  } |
|  |  |
|  | // Make the transformation, calling remove() on the inputs iterator if |
|  | // any items are filtered. Might throw exception and cause rollback. |
|  |  Chunk outputs = transform(contribution, inputs); |
|  |  |
|  | // Adjust the filter count based on available data |
|  |  contribution.incrementFilterCount(getFilterCount(inputs, outputs)); |
|  |  |
|  | // Adjust the outputs if necessary for housekeeping purposes, and then |
|  | // write them out... |
|  |  write(contribution, inputs, getAdjustedOutputs(inputs, outputs)); |
|  |  |
|  |  } |
|  |  |
|  | // 遍历items,逐个item调用processor |
|  | protected Chunk transform(StepContribution contribution, Chunk *inputs)* throws Exception { |
|  |  Chunk outputs = new Chunk<>(); |
|  | for (Chunk*.ChunkIterator iterator = inputs.iterator(); iterator.hasNext();) {* |
|  | final I item = iterator.next(); |
|  |  O output; |
|  | String status = BatchMetrics.STATUS\_SUCCESS; |
|  | try { |
|  |  output = doProcess(item); |
|  |  } |
|  | catch (Exception e) { |
|  | /* |
|  |  * For a simple chunk processor (no fault tolerance) we are done here, so prevent any more processing of these inputs. |
|  |  */ |
|  |  inputs.clear(); |
|  |  status = BatchMetrics.STATUS\_FAILURE; |
|  | throw e; |
|  |  } |
|  | if (output != null) { |
|  |  outputs.add(output); |
|  |  } |
|  | else { |
|  |  iterator.remove(); |
|  |  } |
|  |  } |
|  | return outputs; |
|  |  } |
|  |  |

4. 每个step是如何与事务处理挂钩?

在TaskletStep#doExecute中会使用TransactionTemplate,包装事务操作

标准的事务操作,通过函数式编程风格,从action的CallBack调用实际处理方法

  1. 通过transactionManager获取事务
  2. 执行操作
  3. 无异常,则提交事务
  4. 若异常,则回滚

|  | // org.springframework.batch.core.step.tasklet.TaskletStep#doExecute |
|  |  result = new TransactionTemplate(transactionManager, transactionAttribute) |
|  |  .execute(new ChunkTransactionCallback(chunkContext, semaphore)); |
|  |  |
|  | // 事务启用过程 |
|  | // org.springframework.transaction.support.TransactionTemplate#execute |
|  | @Override |
|  | @Nullable |
|  | public  T execute(TransactionCallback action) throws TransactionException { |
|  |  Assert.state(this.transactionManager != null, "No PlatformTransactionManager set"); |
|  |  |
|  | if (this.transactionManager instanceof CallbackPreferringPlatformTransactionManager) { |
|  | return ((CallbackPreferringPlatformTransactionManager) this.transactionManager).execute(this, action); |
|  |  } |
|  | else { |
|  | TransactionStatus status = this.transactionManager.getTransaction(this); |
|  |  T result; |
|  | try { |
|  |  result = action.doInTransaction(status); |
|  |  } |
|  | catch (RuntimeException | Error ex) { |
|  | // Transactional code threw application exception -> rollback |
|  |  rollbackOnException(status, ex); |
|  | throw ex; |
|  |  } |
|  | catch (Throwable ex) { |
|  | // Transactional code threw unexpected exception -> rollback |
|  |  rollbackOnException(status, ex); |
|  | throw new UndeclaredThrowableException(ex, "TransactionCallback threw undeclared checked exception"); |
|  |  } |
|  | this.transactionManager.commit(status); |
|  | return result; |
|  |  } |
|  |  } |

5. 怎么控制每个chunk几条记录提交一次事务? 控制每个事务窗口处理的item数量

在配置任务时,有个step级别的参数,[commit-interval],用于每个事务窗口提交的控制被处理的item数量。

RepeatTemplate#executeInternal 在处理单条item后,会查看已处理完的item数量,与配置的chunk数量做比较,如果满足chunk数,则不再继续,准备提交事务。

StepBean在初始化时,会新建SimpleCompletionPolicy(chunkSize会优先使用配置值,默认是5)

在每个chunk处理开始时,都会调用SimpleCompletionPolicy#start新建RepeatContextSupport#count用于计数。

源码(简化) org.springframework.batch.repeat.support.RepeatTemplate#executeInternal


|  |  |
|  | /** |
|  |  * Internal convenience method to loop over interceptors and batch |
|  |  * callbacks. |
|  |  * @param callback the callback to process each element of the loop. |
|  |  */ |
|  | private RepeatStatus executeInternal(final RepeatCallback callback) { |
|  | // Reset the termination policy if there is one... |
|  | // 此处会调用completionPolicy.start方法,更新chunk的计数器 |
|  | RepeatContext context = start(); |
|  | // Make sure if we are already marked complete before we start then no processing takes place. |
|  | // 通过running字段来判断是否继续处理next |
|  | boolean running = !isMarkedComplete(context); |
|  | // 省略listeners处理.... |
|  | // Return value, default is to allow continued processing. |
|  | RepeatStatus result = RepeatStatus.CONTINUABLE; |
|  | RepeatInternalState state = createInternalState(context); |
|  | try { |
|  | while (running) { |
|  | /* |
|  |  * Run the before interceptors here, not in the task executor so |
|  |  * that they all happen in the same thread - it's easier for |
|  |  * tracking batch status, amongst other things. |
|  |  */ |
|  | // 省略listeners处理.... |
|  | if (running) { |
|  | try { |
|  | // callback是实际处理方法,类似函数式编程 |
|  |  result = getNextResult(context, callback, state); |
|  |  executeAfterInterceptors(context, result); |
|  |  } |
|  | catch (Throwable throwable) { |
|  |  doHandle(throwable, context, deferred); |
|  |  } |
|  | // 检查当前chunk是否处理完,决策出是否继续处理下一条item |
|  | // N.B. the order may be important here: |
|  | if (isComplete(context, result) || isMarkedComplete(context) || !deferred.isEmpty() { |
|  |  running = false; |
|  |  } |
|  |  } |
|  |  } |
|  |  result = result.and(waitForResults(state)); |
|  | // 省略throwables处理.... |
|  | // Explicitly drop any references to internal state... |
|  |  state = null; |
|  |  } |
|  | finally { |
|  | // 省略代码... |
|  |  } |
|  | return result; |
|  | } |

总结

JSR-352标准定义了Java批处理的基本模型,包含批处理的元数据像 JobExecutions,JobInstances,StepExecutions 等等。通过此类模型,提供了许多基础组件与扩展点:

  1. 完善的基础组件
    1. Spring Batch 有很多的这类组件 例如 ItemReaders,ItemWriters,PartitionHandlers 等等对应各类数据和环境。
  2. 丰富的配置
    1. JSR-352 定义了基于XML的任务设置模型。Spring Batch 提供了基于Java (类型安全的)的配置方式
  3. 可伸缩性
    1. 伸缩性选项-Local Partitioning 已经包含在JSR -352 里面了。但是还应该有更多的选择 ,例如Spring Batch 提供的 Multi-threaded Step,Remote Partitioning ,Parallel Step,Remote Chunking 等等选项
  4. 扩展点
    1. 良好的listener模式,提供step/job运行前后的锚点,以供开发人员个性化处理批处理流程。

2013年, JSR-352标准包含在 JavaEE7中发布,到2022年已近10年,Spring也在探索新的批处理模式, 如Spring Attic /Spring Cloud Data Flow。 https://docs.spring.io/spring-batch/docs/current/reference/html/jsr-352.html

扩展

1. Job/Step运行时的上下文,是如何保存?如何控制?

整个Job在运行时,会将运行信息保存在JobContext中。 类似的,Step运行时也有StepContext。可以在Context中保存一些参数,在任务或者步骤中传递使用。

查看JobContext/StepContext源码,发现仅用了普通变量保存Execution,这个类肯定有线程安全问题。 生产环境中常常出现多个任务并处处理的情况。

SpringBatch用了几种方式来包装并发安全:

  1. 每个job初始化时,通过JobExecution新建了JobContext,每个任务线程都用自己的对象。
  2. 使用JobSynchronizationManager,内含一个ConcurrentHashMap,KEY是JobExecution,VALUE是JobContext
  3. 在任务解释时,会移除当前JobExecution对应的k-v

此处能看到,如果在JobExecution存储大量的业务数据,会导致无法GC回收,导致OOM。所以在上下文中,只应保存精简的数据。

2. step执行时,如果出现异常,如何保护运行状态?

在源码中,使用了各类同步控制和加锁、oldVersion版本拷贝,整体比较复杂(org.springframework.batch.core.step.tasklet.TaskletStep.ChunkTransactionCallback#doInTransaction)

  1. oldVersion版本拷贝:上一次运行出现异常时,本次执行时沿用上次的断点内容

|  | // 节选部分代码 |
|  | oldVersion = new StepExecution(stepExecution.getStepName(), stepExecution.getJobExecution()); |
|  | copy(stepExecution, oldVersion); |
|  |  |
|  | private void copy(final StepExecution source, final StepExecution target) { |
|  |  target.setVersion(source.getVersion()); |
|  |  target.setWriteCount(source.getWriteCount()); |
|  |  target.setFilterCount(source.getFilterCount()); |
|  |  target.setCommitCount(source.getCommitCount()); |
|  |  target.setExecutionContext(new ExecutionContext(source.getExecutionContext())); |
|  | } |
  1. 信号量控制,在每个chunk运行完成后,需先获取锁,再更新stepExecution前
    1. Shared semaphore per step execution, so other step executions can run in parallel without needing the lockSemaphore (org.springframework.batch.core.step.tasklet.TaskletStep#doExecute)

|  | // 省略无关代码 |
|  | try { |
|  | try { |
|  | // 执行w-p-r模型方法 |
|  |  result = tasklet.execute(contribution, chunkContext); |
|  | if (result == null) { |
|  |  result = RepeatStatus.FINISHED; |
|  |  } |
|  |  } |
|  | catch (Exception e) { |
|  | // 省略... |
|  |  } |
|  | } |
|  | finally { |
|  | // If the step operations are asynchronous then we need to synchronize changes to the step execution (at a |
|  | // minimum). Take the lock *before* changing the step execution. |
|  | try { |
|  | // 获取锁 |
|  |  semaphore.acquire(); |
|  |  locked = true; |
|  |  } |
|  | catch (InterruptedException e) { |
|  |  logger.error("Thread interrupted while locking for repository update"); |
|  |  stepExecution.setStatus(BatchStatus.STOPPED); |
|  |  stepExecution.setTerminateOnly(); |
|  |  Thread.currentThread().interrupt(); |
|  |  } |
|  |  stepExecution.apply(contribution); |
|  | } |
|  | stepExecutionUpdated = true; |
|  | stream.update(stepExecution.getExecutionContext()); |
|  | try { |
|  | // 更新上下文、DB中的状态 |
|  | // Going to attempt a commit. If it fails this flag will stay false and we can use that later. |
|  |  getJobRepository().updateExecutionContext(stepExecution); |
|  |  stepExecution.incrementCommitCount(); |
|  |  getJobRepository().update(stepExecution); |
|  | } |
|  | catch (Exception e) { |
|  | // If we get to here there was a problem saving the step execution and we have to fail. |
|  | String msg = "JobRepository failure forcing rollback"; |
|  |  logger.error(msg, e); |
|  | throw new FatalStepExecutionException(msg, e); |
|  | } |
|  |  |

转载请注明:xuhss » 源码解析springbatch的job是如何运行的?

喜欢 (0)

您必须 登录 才能发表评论!