? 优质资源分享 ?
学习路线指引(点击解锁) | 知识定位 | 人群定位 |
---|---|---|
? Python实战微信订餐小程序 ? | 进阶级 | 本课程是python flask+微信小程序的完美结合,从项目搭建到腾讯云部署上线,打造一个全栈订餐系统。 |
?Python量化交易实战? | 入门级 | 手把手带你打造一个易扩展、更安全、效率更高的量化交易系统 |
ConCurrentHashMap
是一个支持高并发集合,常用的集合之一,在jdk1.8
中ConCurrentHashMap
的结构和操作和HashMap
都很类似:
- 数据结构基于
数组+链表/红黑树
。 get
通过计算hash值后取模数组长度确认索引来查询元素。put
方法也是先找索引位置,然后不存在就直接添加,存在相同key
就替换。- 扩容都是创建新的
table
数组,原来的数据转移到新的table
数组中。
唯一不同的是,HashMap
不支持并发操作,ConCurrentHashMap
是支持并发操作的。所以ConCurrentHashMap
的设计也比HashMap
也复杂的多,通过阅读ConCurrentHashMap
的源码,也更加了解一些并发的操作,比如:
volatile
线程可见性CAS
乐观锁synchronized
同步锁/悲观锁
详见HashMap
相关文章:
数据结构
ConCurrentHashMap
是由数组+链表/红黑树
组成的:
其中左侧部分是一个哈希表
,通过hash算法
确定元素在数组的下标:
transient volatile Node[] table;
链表是为了解决hash冲突
,当发生冲突的时候。采用链表法
,将元素添加到链表的尾部。其中Node
节点存储数据:
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
volatile V val;
volatile Node next;
Node(int hash, K key, V val, Node next) {
this.hash = hash;
this.key = key;
this.val = val;
this.next = next;
}
}
Node
节点包含:
hash
hash值key
值value
值next
next指针
主要属性字段
// 最大容量
int MAXIMUM\_CAPACITY = 1 << 30;
// 初始化容量
int DEFAULT\_CAPACITY = 16
// 控制数组初始化或者扩容,为负数时,表示数组正在初始化或者扩容。-1表示正在初始化。其他情况-n表示n线程正在扩容。
private transient volatile int sizeCtl;
// 装载因子
float LOAD\_FACTOR = 0.75f
// 链表长度为 8 转成红黑树
int TREEIFY\_THRESHOLD = 8
// 红黑树长度小于6退化成链表
int UNTREEIFY\_THRESHOLD = 6;
获取数据get
public V get(Object key) {
Node[] tab; Node e, p; int n, eh; K ek;
// 计算hash值
int h = spread(key.hashCode());
// 判断 tab 不为空并且 tab对应的下标不为空
if ((tab = table) != null && (n = tab.length) > 0 &&
(e = tabAt(tab, (n - 1) & h)) != null) {
if ((eh = e.hash) == h) {
if ((ek = e.key) == key || (ek != null && key.equals(ek)))
return e.val;
}
// eh < 0 表示遇到扩容
else if (eh < 0)
return (p = e.find(h, key)) != null ? p.val : null;
// 遍历链表,直到遍历key相等的值
while ((e = e.next) != null) {
if (e.hash == h &&
((ek = e.key) == key || (ek != null && key.equals(ek))))
return e.val;
}
}
return null;
}
- 获取数据流程:
- 调用
spread
获取hash
值,通过(n - 1) & h
取余获取数组下标的数据。 - 首节点符合就返回数据。
eh<0
表示遇到了扩容,会调用正在扩容节点ForwardingNode
的find
方法,查找该节点,匹配就返回。- 遍历链表,匹配到数据就返回。
- 以上都不符合,返回
null
。
- 调用
get如何实现线程安全
get方法里面没有使用到锁,那是如何实现线程安全。主要使用到了volatile
。
volatile
一个线程对共享变量的修改,另外一个线程能够立刻看到,我们称为可见性
。
cpu
运行速度比内存速度快很多,为了均衡和内存之间的速度差异,增加了cpu缓存
,如果在cpu缓存中存在cpu
需要数据,说明命中了cpu
缓存,就不经过访问内存。如果不存在,则要先把内存的数据载入到cpu
缓存中,在返回给cpu
处理器。
在多核cpu
的服务器中,每个cpu
都有自己的缓存,cpu
之间的缓存是不共享的。 当多个线程在不同的cpu
上执行时,比如下图中,线程A
操作的是cpu-1
上的缓存,线程B
操作的是cpu-2
上的缓存,这个时候,线程A
对变量V
的操作对于线程B
是不可见的
。
但是一个变量被volatile
声明,它的意思是:
告诉编译器,对这个变量的读写,不能使用cpu缓存,必须从内存中读取或者写入。
上面的变量V被volatile
声明,线程A在cup-1中修改了数据,会直接写到内存中,不会写入到cpu缓存中。而线程B无法从cpu缓存读取变量,需要从主内存拉取数据。
- 总结:
- 使用
volatile
关键字的变量会将修改的变量强制写入内存中。 - 其他线程读取变量时,会直接从内存中读取变量。
- 使用
volatile
在get
应用
table
哈希表
transient volatile Node[] table;
使用volatile
声明数组,表示引用地址
是volatile
而不是数组元素
是volatile
。
既然不是
数组元素
被修饰成volatile
,那实现线程安全在看Node
节点。
Node
节点
static class Node implements Map.Entry {
final int hash;
final K key;
volatile V val;
volatile Node next;
}
其中val
和next
都用了volatile
修饰,在多线程环境下,线程A修改节点val
或者新增节点对别人线程是可见的
。
所以get
方法使用无锁操作是可以保证线程安全
。
既然
volatile
修饰数组对get
操作没有效果,那加在volatile
上有什么目的呢?
是为了数组在扩容的时候对其他线程具有可见性。
- jdk 1.8 的get操作不使用锁,主要有两个方面:
- Node节点的
val
和next
都用volatile
修饰,保证线程修改或者新增节点对别人线程是可见的。 volatile
修饰table
数组,保证数组在扩容时其它线程是具有可见性的。
- Node节点的
添加数据put
put(K key, V value)
直接调用putVal(key, value, false)
方法。
public V put(K key, V value) {
return putVal(key, value, false);
}
putVal()
方法:
final V putVal(K key, V value, boolean onlyIfAbsent) {
// key或者value为空,报空指针错误
if (key == null || value == null) throw new NullPointerException();
// 计算hash值
int hash = spread(key.hashCode());
int binCount = 0;
for (Node[] tab = table;;) {
Node f; int n, i, fh;
if (tab == null || (n = tab.length) == 0)
// tab为空或者长度为0,初始化table
tab = initTable();
// 使用volatile查找索引下的数据
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
// 索引位置没有数据,使用cas添加数据
if (casTabAt(tab, i, null,
new Node(hash, key, value, null)))
break; // no lock when adding to empty bin
}
// MOVED表示数组正在进行数组扩容,当前进行也参加到数组复制
else if ((fh = f.hash) == MOVED)
tab = helpTransfer(tab, f);
else {
V oldVal = null;
// 数组不在扩容和也有值,说明数据下标处有值
// 链表中有数据,使用synchronized同步锁
synchronized (f) {
if (tabAt(tab, i) == f) {
// 为链表
if (fh >= 0) {
binCount = 1;
// 遍历链表
for (Node e = f;; ++binCount) {
K ek;
// hash 以及key相同,替换value值
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
if (!onlyIfAbsent)
e.val = value;
break;
}
Node pred = e;
// 遍历到链表尾,添加链表节点
if ((e = e.next) == null) {
pred.next = new Node(hash, key,
value, null);
break;
}
}
}
// 红黑树,TreeBin哈希值固定为-2
else if (f instanceof TreeBin) {
Node p;
binCount = 2;
if ((p = ((TreeBin)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
if (binCount != 0) {
// 链表转红黑树
if (binCount >= TREEIFY\_THRESHOLD)
treeifyBin(tab, i);
if (oldVal != null)
return oldVal;
break;
}
}
}
addCount(1L, binCount);
return null;
}
- 添加数据流程:
- 判断
key
或者value
为null
都会报空指针错误。 - 计算
hash
值,然后开启没有终止条件的循环。 - 如果
table
数组为null
,初始化数组。 - 数组
table
不为空,通过volatile
找到数组对应下标是否为空,为空就使用CAS
添加头结点。 - 节点的
hash
=-1
表示数组正在扩容,一起进行扩容操作。 - 以上不符合,说明索引处有值,使用
synchronized
锁住当前位置的节点,防止被其他线程修改。- 如果是链表,遍历链表,匹配到相同的
key
替换value
值。如果链表找不到,就添加到链表尾部。 - 如果是红黑树,就添加到红黑树中。
- 如果是链表,遍历链表,匹配到相同的
- 节点的链表个数大于
8
,链表就转成红黑树。
- 判断
ConcurrentHashMap
键值对为什么都不能为null
,而HashMap
就可以?
通过get
获取数据时,如果获取的数据是null
,就无法判断,是put时的value为null,还是找个key就没做过映射。HashMap是非并发的,可以通过contains(key)
判断,而支持并发的ConcurrentHashMap
在调用contains
方法和get
方法的时候,map
可能已经不同了。参考
如果数组table
为空调用initTable
初始化数组:
private final Node[] initTable() {
Node[] tab; int sc;
// table 为 null
while ((tab = table) == null || tab.length == 0) {
if ((sc = sizeCtl) < 0)
// sizeCtl<0表示其它线程正在初始化数组数组,当前线程需要让出CPU
Thread.yield(); // lost initialization race; just spin
// 调用CAS初始化table表
else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
try {
if ((tab = table) == null || tab.length == 0) {
int n = (sc > 0) ? sc : DEFAULT\_CAPACITY;
@SuppressWarnings("unchecked")
Node[] nt = (Node[])new Node,?[n];
table = tab = nt;
sc = n - (n >>> 2);
}
} finally {
sizeCtl = sc;
}
break;
}
}
return tab;
}
initTable
判断sizeCtl
值,如果sizeCtl
为-1
表示有其他线程正在初始化数组,当前线程调用Thread.yield
让出CPU
。而正在初始化数组的线程通过Unsafe.compareAndSwapInt
方法将sizeCtl
改成-1
。
initTable
最外层一直使用while
循环,而非if
条件判断,就是确保数组可以初始化成功。
数组初始化成功之后,再执行添加的操作,调用tableAt
通过volatile
的方式找到(n-1)&hash
处的bin
节点。
- 如果为空,使用
CAS
添加节点。 - 不为空,需要使用
synchronized
锁,索引对应的bin
节点,进行添加或者更新操作。
Insertion (via put or its variants) of the first node in an
empty bin is performed by just CASing it to the bin. This is
by far the most common case for put operations under most
key/hash distributions. Other update operations (insert,
delete, and replace) require locks. We do not want to waste
the space required to associate a distinct lock object with
each bin, so instead use the first node of a bin list itself as
a lock. Locking support for these locks relies on builtin
"synchronized" monitors.
如果f的hash值为-1,说明当前f是ForwaringNode节点,意味着有其它线程正在扩容,则一起进行扩容操作。
完成添加或者更新操作之后,才执行break
终止最外层没有终止条件的for循环,确保数据可以添加成功。
最后执行addCount
方法。
private final void addCount(long x, int check) {
CounterCell[] as; long b, s;
// 利用CAS更新baseCoount
if ((as = counterCells) != null ||
!U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
CounterCell a; long v; int m;
boolean uncontended = true;
if (as == null || (m = as.length - 1) < 0 ||
(a = as[ThreadLocalRandom.getProbe() & m]) == null ||
!(uncontended =
U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
fullAddCount(x, uncontended);
return;
}
if (check <= 1)
return;
s = sumCount();
}
// check >= 0,需要检查是否需要进行扩容操作
if (check >= 0) {
Node[] tab, nt; int n, sc;
while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
(n = tab.length) < MAXIMUM\_CAPACITY) {
int rs = resizeStamp(n);
if (sc < 0) {
if ((sc >>> RESIZE\_STAMP\_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX\_RESIZERS || (nt = nextTable) == null ||
transferIndex <= 0)
break;
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
transfer(tab, nt);
}
else if (U.compareAndSwapInt(this, SIZECTL, sc,
(rs << RESIZE\_STAMP\_SHIFT) + 2))
transfer(tab, null);
s = sumCount();
}
}
}
扩容transfer
什么时候会扩容
*插入一个新的节点:
- 新增节点,所在的链表元素个数达到阈值8,则会调用
treeifyBin
把链表转成红黑树,在转成之前,会判断数组长度小于MIN_TREEIFY_CAPACITY
,默认是64
,触发扩容。 - 调用
put
方法,在结尾addCount
方法记录元素个数,并检查是否进行扩容,数组元素达到阈值时,触发扩容。
不使用加锁的,支持多线程扩容。利用并发处理减少扩容带来性能的影响。
private final void transfer(Node[] tab, Node[] nextTab) {
int n = tab.length, stride;
if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
stride = MIN_TRANSFER_STRIDE; // subdivide range
if (nextTab == null) { // initiating
try {
@SuppressWarnings("unchecked")
// 创建nextTab,容量为原来容量的两倍
Node[] nt = (Node[])new Node,?[n << 1];
nextTab = nt;
} catch (Throwable ex) { // try to cope with OOME
// 扩容是抛出异常,将阈值设置成最大,表示不再扩容。
sizeCtl = Integer.MAX\_VALUE;
return;
}
nextTable = nextTab;
transferIndex = n;
}
int nextn = nextTab.length;
// 创建 ForwardingNode 节点,作为标记位,表明当前位置已经做过桶处理
ForwardingNode fwd = new ForwardingNode(nextTab);
// advance = true 表明该节点已经处理过了
boolean advance = true;
boolean finishing = false; // to ensure sweep before committing nextTab
for (int i = 0, bound = 0;;) {
Node f; int fh;
// 控制 --i,遍历原hash表中的节点
while (advance) {
int nextIndex, nextBound;
if (--i >= bound || finishing)
advance = false;
else if ((nextIndex = transferIndex) <= 0) {
i = -1;
advance = false;
}
// 用CAS计算得到的transferIndex
else if (U.compareAndSwapInt
(this, TRANSFERINDEX, nextIndex,
nextBound = (nextIndex > stride ?
nextIndex - stride : 0))) {
bound = nextBound;
i = nextIndex - 1;
advance = false;
}
}
// 将原数组中的节点赋值到新的数组中,nextTab赋值给table,清空nextTable。
if (i < 0 || i >= n || i + n >= nextn) {
int sc;
// 所有节点完成复制工作,
if (finishing) {
nextTable = null;
table = nextTab;
// 设置新的阈值为原来的1.5倍
sizeCtl = (n << 1) - (n >>> 1);
return;
}
// 利用CAS方法更新扩容的阈值,sizeCtl减一,说明新加入一个线程参与到扩容中
if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
if ((sc - 2) != resizeStamp(n) << RESIZE\_STAMP\_SHIFT)
return;
finishing = advance = true;
i = n; // recheck before commit
}
}
// 遍历的节点为null,则放入到ForwardingNode指针节点
else if ((f = tabAt(tab, i)) == null)
advance = casTabAt(tab, i, null, fwd);
// f.hash==-1表示遍历到ForwardingNode节点,说明该节点已经处理过了
else if ((fh = f.hash) == MOVED)
advance = true; // already processed
else {
// 节点加锁
synchronized (f) {
if (tabAt(tab, i) == f) {
Node ln, hn;
// fh>=0,表示为链表节点
if (fh >= 0) {
// 构建两个链表,一个是原链表,另一个是原链表的反序链表
int runBit = fh & n;
Node lastRun = f;
for (Node p = f.next; p != null; p = p.next) {
int b = p.hash & n;
if (b != runBit) {
runBit = b;
lastRun = p;
}
}
if (runBit == 0) {
ln = lastRun;
hn = null;
}
else {
hn = lastRun;
ln = null;
}
for (Node p = f; p != lastRun; p = p.next) {
int ph = p.hash; K pk = p.key; V pv = p.val;
if ((ph & n) == 0)
ln = new Node(ph, pk, pv, ln);
else
hn = new Node(ph, pk, pv, hn);
}
// 在nextTable i 位置处插入链表
setTabAt(nextTab, i, ln);
// 在nextTable i+n 位置处插入链表
setTabAt(nextTab, i + n, hn);
// 在table i的位置处插上ForwardingNode,表示该节点已经处理过
setTabAt(tab, i, fwd);
// 可以执行 --i的操作,再次遍历节点
advance = true;
}
// TreeBin红黑树,按照红黑树处理,处理逻辑和链表类似
else if (f instanceof TreeBin) {
TreeBin t = (TreeBin)f;
TreeNode lo = null, loTail = null;
TreeNode hi = null, hiTail = null;
int lc = 0, hc = 0;
for (Node e = t.first; e != null; e = e.next) {
int h = e.hash;
TreeNode p = new TreeNode
(h, e.key, e.val, null, null);
if ((h & n) == 0) {
if ((p.prev = loTail) == null)
lo = p;
else
loTail.next = p;
loTail = p;
++lc;
}
else {
if ((p.prev = hiTail) == null)
hi = p;
else
hiTail.next = p;
hiTail = p;
++hc;
}
}
// 扩容后树节点的个数<=6,红黑树转成链表
ln = (lc <= UNTREEIFY\_THRESHOLD) ? untreeify(lo) :
(hc != 0) ? new TreeBin(lo) : t;
hn = (hc <= UNTREEIFY\_THRESHOLD) ? untreeify(hi) :
(lc != 0) ? new TreeBin(hi) : t;
setTabAt(nextTab, i, ln);
setTabAt(nextTab, i + n, hn);
setTabAt(tab, i, fwd);
advance = true;
}
}
}
}
}
}
扩容过程有的复杂,主要涉及到多线程的并发扩容,ForwardingNode
的作用就是支持扩容操作,将已经处理过的节点和空节点置为ForwardingNode
,并发处理时多个线程处理ForwardingNode
表示已经处理过了,就往后遍历。
总结
ConcurrentHashMap
是基于数组+链表/红黑树
的数据结构,添加、删除、更新都是先通过计算key
的hash
值确定数据的索引值,这和HashMap
是类似的,只不过ConcurrentHashMap
针对并发做了更多的处理。-
get
方法获取数据,先计算hash
值再再和数组长度取余操作获取索引位置。- 通过
volatile
关键字找到table
保证多线程环境下,数组扩容具有可见性
,而Node
节点中val
和next
指针都使用volatile
修饰保证数据修改后别的线程是可见的
。这就保证了ConcurrentHashMap
的线程安全性
。 - 如果遇到数组扩容,就参与到扩容中。
- 首节点值匹配到数据就直接返回数据,否则就遍历链表或者红黑树,直到匹配到数据。
- 通过
-
put
方法添加或者更新数据。- 如果
key
或value
为空,就报错。这是因为在调用get
方法获取数据为null
,无法判断是获取的数据为null,还是对应的key
就不存在映射,HashMap
可以通过contains(key)
判断,而ConcurrentHashMap
在多线程环境下调用contains
和get
方法的时候,map
可能就不同了。 - 如果
table
数组为空,先初始化数组,先通过sizeCtl
控制并发,如果小于0表示有别的线程正在初始化数组,就让出CPU
,否则使用CAS
将sizeCtl
设置成-1
。 - 初始化数组之后,如果节点为空,使用
CAS
添加节点。 - 不为空,就锁住该节点,进行添加或者更新操作。
- 如果
-
transfer
扩容- 在新增一个节点时,链表个数达到阈值
8
,会将链表转成红黑树,在转成之前,会先判断数组长度小于64
,会触发扩容。还有集合个数达到阈值时也会触发扩容。 - 扩容数组的长度是原来数组的两倍。
- 为了支持多线程扩容创建
ForwardingNode
节点作为标记位,如果遍历到该节点,说明已经做过处理。 - 遍历赋值原来的数据给新的数组。
- 在新增一个节点时,链表个数达到阈值
参考
Java并发——ConcurrentHashMap(JDK 1.8)
转载请注明:xuhss » 详解ConCurrentHashMap源码(jdk1.8)