? 优质资源分享 ?
学习路线指引(点击解锁) | 知识定位 | 人群定位 |
---|---|---|
? Python实战微信订餐小程序 ? | 进阶级 | 本课程是python flask+微信小程序的完美结合,从项目搭建到腾讯云部署上线,打造一个全栈订餐系统。 |
?Python量化交易实战? | 入门级 | 手把手带你打造一个易扩展、更安全、效率更高的量化交易系统 |
前言
在过去的一些文章里面,我们聊了一些.NET平台上高性能编程的技巧,今天带大家了解一下AlterNats
这个库是如何做到远超同类SDK性能的。
NATS:NATS是一个开源、轻量级、高性能的分布式消息中间件,实现了高可伸缩性和优雅的Publish/Subscribe模型。NATS的开发哲学认为高质量的QoS应该在客户端构建,故只建立了Request-Reply,不提供 1.持久化 2.事务处理 3.增强的交付模式 4.企业级队列等功能,所以它的性能可以非常好。
NATS.NET:NATS.NET是NATS官方实现的C#语言客户端,它的架构和Go版本保持一致,导致没有使用一些高性能的API和新的语法,性能整体较弱,不过它支持.NET4.6+和.NETStandard1.6+几乎兼容主流的.NET版本。
AlterNats:因为官方实现的NATS.NET
性能较弱,所以大佬又实现使用了C#和.NET新特性和API编写了这个高性能NATS
客户端,它的发布订阅性能比StackExchange.Redis
和官方的Nats.Net快三倍以上。
上图是8byte数据发布订阅性能对比,可以看到AlterNats遥遥领先,比官方的实现快了很多。下面就带大家了解一下如何使用AlterNats和为什么它能实现这么高的性能。
使用
AlterNats的API完全采用async/await并保持C#原生风格。
// 创建一个链接
await using var conn = new NatsConnection();
// 订阅消息
var subscription = await conn.SubscribeAsync("foo", x =>
{
Console.WriteLine($"Received {x}");
});
// 发布消息
await conn.PublishAsync("foo", new Person(30, "bar"));
// 退订
subscription.Dipose();
// ---
public record Person(int Age, string Name);
NatsOptions/ConnectOptions是不可变的记录,它可以使用C#的new和with语法,非常的方便。
// 可选配置项可以通过`with`关键字
var options = NatsOptions.Default with
{
Url = "nats://127.0.0.1:9999",
LoggerFactory = new MinimumConsoleLoggerFactory(LogLevel.Information),
Serializer = new MessagePackNatsSerializer(),
ConnectOptions = ConnectOptions.Default with
{
Echo = true,
Username = "foo",
Password = "bar",
}
};
await using var conn = new NatsConnection(options);
它还提供了用于接收结果的标准协议。可以将其用作服务器之间的简单RPC,在某些情况下可能很有用。
// 服务端
await conn.SubscribeRequestAsync("foobar", (int x) => $"Hello {x}");
// 客户端
var response = await conn.RequestAsync<int, string>("foobar", 100);
如何做到高性能的?
在之前的文章中,和大家聊过,高性能就是在相同的资源的情况下,能处理更多的数据。我们需要降低单次数据处理所耗费的资源(CPU、内存、磁盘等等),下面就带大家了解AlterNats做了什么,来节省这些资源。
高性能Socket编程
在C#中,最底层的网络处理类是Socket,如果你想要异步、高性能的处理网络请求,你需要重用带回调的SocketAsyncEventArgs。
然而,现在我们有更简单的方式使用async/await方法,不需要复杂的SocketAsyncEventArgs,不过它有许多使用异步的方法,需要你选择正确的一个去使用。最简单选择的方法就是,用返回值为ValueTask的API就好了。
// 使用这些
public ValueTask ConnectAsync(string host, int port, CancellationToken cancellationToken)
public ValueTask<int> ReceiveAsync(Memory buffer, SocketFlags socketFlags, CancellationToken cancellationToken)
public ValueTask<int> SendAsync(ReadOnlyMemory buffer, SocketFlags socketFlags, CancellationToken cancellationToken))
// 不要使用这些
public Task ConnectAsync(string host, int port)
public Task<int> ReceiveAsync(ArraySegment buffer, SocketFlags socketFlags)
public Task<int> SendAsync(ArraySegment buffer, SocketFlags socketFlags)
返回ValueTask的API内部使用的AwaitableSocketAsyncEventArgs,它非常的高效,另外由于ValueTask是结构体类型,无需像Task一样在堆上分配,还能简单的享受到异步带来的性能提升。与SocketAsyncEventArgs相比,这是一个非常大的改进,SocketAsyncEventArgs非常难用,我强烈推荐上面提到的ValueTask API.
另外要注意的是,同步API可以使用Span
类型,但异步的API只能使用Memroy
(因为数据需要存在在堆上),这个点不仅限于Socket网络编程,其它API也是一样,如果整个系统在设计的时候就没有考虑这些,那么无法使用Span
类型可能为成为障碍。但是你必须保证你可以随心所欲的使用Memory
。
使用二进制解析文本协议
NATS的协议是基于文本的协议,和Redis等协议类似,它可以简单通过字符串函数来拆分和处理。可以使用StreamReader很容易的实现这个协议,因为你所需要就是ReadLine来读取数据就好。然而,在网络上传输的是UTF-8格式的二进制数据,将其作为字符串来处理开销较大,如果我们需要高性能,那么必须将其作为二进制数据来处理。
NATS的协议可以通过前导字符串(INFO、MSG、PINT、+OK、-ERR等等)来确定消息的类型。虽然可以很容易的使用if(msg == "INFO")
这样的代码来分割字符串处理,但是出于性能原因,这样的开销是不可接受的。
那么我们使用什么样的方法来提升性能呢?举一个例子,字符串INFO
的UTF-8编码是[73, 78, 70, 79]
。
我们可以直接使用ReadOnlySpan.SequenceEqual()
函数来处理(这个函数优化非常好,它会使用SIMD来提高性能)。
不过在我们的场景里,因为NATS的前导字符串都在4byte以内,所以我们可以将INFO
转换为一个int
类型来处理,比如将字符串INFO
的UTF-8编码转换为int就是1330007625
.
所以在AlterNats里面的代码就是这样处理INFO
的。
var msg = new byte[] {73,78,70,79};
if (Unsafe.ReadUnaligned<int>(ref MemoryMarshal.GetReference(msg)) == 1330007625) // INFO
{
"Command is INFO".Dump();
}
这应该是在理论上最快的判断方式了,3个字符的指令后面总是紧跟着空格或者换行符,所以可以使用下面这些常量来判断其它的类型。
internal static class ServerOpCodes
{
public const int Info = 1330007625; // Encoding.ASCII.GetBytes("INFO") |> MemoryMarshal.Read
public const int Msg = 541545293; // Encoding.ASCII.GetBytes("MSG ") |> MemoryMarshal.Read
public const int Ping = 1196312912; // Encoding.ASCII.GetBytes("PING") |> MemoryMarshal.Read
public const int Pong = 1196314448; // Encoding.ASCII.GetBytes("PONG") |> MemoryMarshal.Read
public const int Ok = 223039275; // Encoding.ASCII.GetBytes("+OK\r") |> MemoryMarshal.Read
public const int Error = 1381123373; // Encoding.ASCII.GetBytes("-ERR") |> MemoryMarshal.Read
}
使用栈上分配
在请求发送中,有很多小的字符串和byte[]
对象,这些小对象会比较频繁产生从而影响GC标记时间,在AlterNats中,比较多的使用了stackalloc byte[10]
将这些小的对象分配在栈上,当方法结束时,对象就自动释放了,无需GC再参与,有利于降低内存占用率和GC的暂停时间。
public void WritePublish(in NatsKey subject, ReadOnlyMemory inboxPrefix, int id, T? value, INatsSerializer serializer)
{
// 栈上分配小对象
Span idBytes = stackalloc byte[10];
if (Utf8Formatter.TryFormat(id, idBytes, out var written))
{
idBytes = idBytes.Slice(0, written);
}
var offset = 0;
var maxLengthWithoutPayload = CommandConstants.PubWithPadding.Length
+ subject.LengthWithSpacePadding
+ (inboxPrefix.Length + idBytes.Length + 1) // with space
+ MaxIntStringLength
+ NewLineLength;
}
自动管道批处理
在NATS协议中,所有的写入和读取操作都是流水线的(批处理)。这很容易用Redis的流水线来解释。比如,如果你同一时间发送3个消息,每次发送一个,然后等待响应,那么多次往返的发送和接收会成为性能瓶颈。
在发送消息中,AlterNats自动将它们组织成流水线:使用System.Threading.Channels,消息被打包进入队列,然后由一个写循环检索它们,并将它们通过网络成批的发送出去。一旦网络传输完成,写循环的方法又会将等待网络传输时累积的消息再次进行批处理。
这不仅能节省往返的时间(在NATS中,发布和订阅都是独立的,所以不需要等待响应),另外它也能减少连续的系统调用。.NET最快的日志记录组件ZLogger也采用了相同的方法。
将许多功能整合到单个对象中
为了实现这样的PublishAsync
方法,我们需要将数据放入队列的Channel中,并且将其固定在堆上。我们还需要一个异步方法的Task,以便我们可以用await等待它写入完成。
await connection.PublishAsync(value);
为了高效地实现这样一个API,避免多余的分配,我们把所有的功能都在一个消息对象(内部名称叫Command)里面,这样的话只有它会被分配内存。
class AsyncPublishCommand<T> :
ICommand,
IValueTaskSource,
IThreadPoolWorkItem,
IObjectPoolNode>
internal interface ICommand
{
void Write(ProtocolWriter writer);
}
internal interface IObjectPoolNode
{
ref T? NextNode { get; }
}
这个对象(AsyncPublicCommand)本身就有用于保存T类型数据和将其二进制数据写入Socket的角色(ICommand)。
此外,通过实现IValueTaskSource接口,该对象本身也变成了ValueTask。
然后,await后面的回调需要交给线程池处理,以避免阻塞写循环。使用传统的ThreadPool.QueueUserWorkItem(callback)
会有额外的内存分配,因为它会在内部创建一个ThreadPoolWorkItem
并将其塞入线程池队列中。在.NET Core 3.0以后我们可以通过实现IThreadPoolWorkItem
来避免内部ThreadPoolWorkItem
对象的内存分配。
最后,我们只有一个对象需要分配,另外我们还可以池化这个对象,使其达到零分配(zero allocated)。可以使用ConcurrentQueue
或者类似的轻松实现对象池,上面的类中,通过实现IObjectPoolNode
接口,使它自己成为栈中的节点,避免分配数组。堆栈也可以提供一个无效的实现,为这种缓存的使用进行优化。
零拷贝架构
需要发布、订阅的数据通常是序列化的C#类型,比如Json、MessagePack等。在这种情况下,它们不可避免的会使用bytes[]
交换数据,例如,StackExchange.Redis中的RedisValue内容实际上就是bytes[]
,无论是发送还是接收,我们都需要创建和保存bytes[]
。
为了避免这种情况,通常会使用ArrayPool来实现零分配,但是这仍然会产生复制的成本。当然,零分配是我们的目标,但是我们也要朝着zero-copy去努力。
AlterNats序列化要求使用IBufferWriter
写入,使用ReadOnlySequence
来读取。
public interface INatsSerializer
{
int Serialize(ICountableBufferWriter bufferWriter, T? value);
T? Deserialize(in ReadOnlySequence buffer);
}
public interface ICountableBufferWriter : IBufferWriter
{
int WrittenCount { get; }
}
// ---
// 举个例子,使用MessagePack来实现序列化和反序列化
public class MessagePackNatsSerializer : INatsSerializer
{
public int Serialize(ICountableBufferWriter bufferWriter, T? value)
{
var before = bufferWriter.WrittenCount;
MessagePackSerializer.Serialize(bufferWriter, value);
return bufferWriter.WrittenCount - before;
}
public T? Deserialize(in ReadOnlySequence buffer)
{
return MessagePackSerializer.Deserialize(buffer);
}
}
C#的System.Text.Json或MessagePack有接收IBufferWriter
参数的序列化重载方法。序列化器通过IBufferWriter直接读取和写入Socket提供的缓冲区,从而消除了Socket和序列化器之间的bytes[]
复制。
在读取时,ReadOnlySequence
是必须的,因为从Socket接收的数据通常是分段的。
一种常见的设计模式就使用System.IO.Pipelines的PipeReader来读取和处理数据,它目的是一个简单使用的高性能I/O库。但是AlterNats没有使用Pipelines,而是使用了自己的读取机制和ReadOnlySequence
。
System.Text.Json和MessagePack for C#的序列化方法提供了一个接受IBufferWriter
参数的重载,反序列化方法接受ReadOnlySequence
。换句话说,现代序列化器必须支持IBufferWriter
和ReadOnlySequence
。
总结
本文内容70%来自AlterNats作者的博客文章,这是一篇不可多得的好文章,详细的说明了AlterNats是如何做到高性能的,让我们在回顾一下。
- 使用最新的Socket ValueTask API
- 将所有的功能放到单个对象中,降低SDK的内存分配
- 池化SDK使用类,栈上分配数据,做到堆上零分配
- 使用二进制方式解析NATS协议
- 对读取和写入自动进行批处理
- 使用
IBufferWriter
和ReadOnlySequence
,对网络数据处理做到zero-copy
附录
AlterNats项目地址: https://github.com/Cysharp/AlterNats
转载请注明:xuhss » AlterNats是如何做到高性能的发布订阅的?