文章目录
显示
? 优质资源分享 ?
学习路线指引(点击解锁) | 知识定位 | 人群定位 |
---|---|---|
? Python实战微信订餐小程序 ? | 进阶级 | 本课程是python flask+微信小程序的完美结合,从项目搭建到腾讯云部署上线,打造一个全栈订餐系统。 |
?Python量化交易实战? | 入门级 | 手把手带你打造一个易扩展、更安全、效率更高的量化交易系统 |
阅读目录
回到顶部## 1、ORACLE归档日志介绍
归档日志暴增是oracle比较常见的问题,遇到归档日志暴增,我们该如何排查:
- 归档日志暴增一般都是应用或者人为引起的
- 理解归档日志存储的是什么
- 如何排查归档日志暴增原因
- 如何优化归档日志暴增
1.1 归档日志是什么
归档日志(Archive Log)是非活动的重做日志(redo)备份.
通过使用归档日志,可以保留所有重做历史记录,当数据库处于ARCHIVELOG模式并进行日志切换式,后台进程ARCH会将重做日志的内容保存到归档日志中.
当数据库出现介质失败时,使用数据文件备份,归档日志和重做日志可以完全恢复数据库。
1.2 归档日志存储的是什么
所有重做的历史记录,包括DML语句、数据改变等
1.3 归档日志暴增的原因
一般是DML操作大量的数据,导致归档日志暴增
1.4 排查归档日志暴增的方法
1.SQL语句
2.AWR
3.挖掘归档日志
回到顶部## 2、归档日志暴增排查实战
2.1 制造归档日志暴增
create table scott.object as select * from dba\_objects;
-- 执行10次
-- insert
insert into scott.object select * from scott.object;
select count(1) from scott.object;
-- 49384448
-- update
update SCOTT.object set owner='aa';
-- delete
delete from SCOTT.object;
truncate table SCOTT.object;
2.2 查看归档日志切换
SELECT
THREAD# id,SUBSTR(TO\_CHAR(first\_time, 'MM/DD/RR HH:MI:SS'),1,5) DAY
, SUM(DECODE(SUBSTR(TO\_CHAR(first\_time, 'MM/DD/RR HH24:MI:SS'),10,2),'00',1,0)) H00
, SUM(DECODE(SUBSTR(TO\_CHAR(first\_time, 'MM/DD/RR HH24:MI:SS'),10,2),'01',1,0)) H01
, SUM(DECODE(SUBSTR(TO\_CHAR(first\_time, 'MM/DD/RR HH24:MI:SS'),10,2),'02',1,0)) H02
, SUM(DECODE(SUBSTR(TO\_CHAR(first\_time, 'MM/DD/RR HH24:MI:SS'),10,2),'03',1,0)) H03
, SUM(DECODE(SUBSTR(TO\_CHAR(first\_time, 'MM/DD/RR HH24:MI:SS'),10,2),'04',1,0)) H04
, SUM(DECODE(SUBSTR(TO\_CHAR(first\_time, 'MM/DD/RR HH24:MI:SS'),10,2),'05',1,0)) H05
, SUM(DECODE(SUBSTR(TO\_CHAR(first\_time, 'MM/DD/RR HH24:MI:SS'),10,2),'06',1,0)) H06
, SUM(DECODE(SUBSTR(TO\_CHAR(first\_time, 'MM/DD/RR HH24:MI:SS'),10,2),'07',1,0)) H07
, SUM(DECODE(SUBSTR(TO\_CHAR(first\_time, 'MM/DD/RR HH24:MI:SS'),10,2),'08',1,0)) H08
, SUM(DECODE(SUBSTR(TO\_CHAR(first\_time, 'MM/DD/RR HH24:MI:SS'),10,2),'09',1,0)) H09
, SUM(DECODE(SUBSTR(TO\_CHAR(first\_time, 'MM/DD/RR HH24:MI:SS'),10,2),'10',1,0)) H10
, SUM(DECODE(SUBSTR(TO\_CHAR(first\_time, 'MM/DD/RR HH24:MI:SS'),10,2),'11',1,0)) H11
, SUM(DECODE(SUBSTR(TO\_CHAR(first\_time, 'MM/DD/RR HH24:MI:SS'),10,2),'12',1,0)) H12
, SUM(DECODE(SUBSTR(TO\_CHAR(first\_time, 'MM/DD/RR HH24:MI:SS'),10,2),'13',1,0)) H13
, SUM(DECODE(SUBSTR(TO\_CHAR(first\_time, 'MM/DD/RR HH24:MI:SS'),10,2),'14',1,0)) H14
, SUM(DECODE(SUBSTR(TO\_CHAR(first\_time, 'MM/DD/RR HH24:MI:SS'),10,2),'15',1,0)) H15
, SUM(DECODE(SUBSTR(TO\_CHAR(first\_time, 'MM/DD/RR HH24:MI:SS'),10,2),'16',1,0)) H16
, SUM(DECODE(SUBSTR(TO\_CHAR(first\_time, 'MM/DD/RR HH24:MI:SS'),10,2),'17',1,0)) H17
, SUM(DECODE(SUBSTR(TO\_CHAR(first\_time, 'MM/DD/RR HH24:MI:SS'),10,2),'18',1,0)) H18
, SUM(DECODE(SUBSTR(TO\_CHAR(first\_time, 'MM/DD/RR HH24:MI:SS'),10,2),'19',1,0)) H19
, SUM(DECODE(SUBSTR(TO\_CHAR(first\_time, 'MM/DD/RR HH24:MI:SS'),10,2),'20',1,0)) H20
, SUM(DECODE(SUBSTR(TO\_CHAR(first\_time, 'MM/DD/RR HH24:MI:SS'),10,2),'21',1,0)) H21
, SUM(DECODE(SUBSTR(TO\_CHAR(first\_time, 'MM/DD/RR HH24:MI:SS'),10,2),'22',1,0)) H22
, SUM(DECODE(SUBSTR(TO\_CHAR(first\_time, 'MM/DD/RR HH24:MI:SS'),10,2),'23',1,0)) H23
FROM
v$log\_history a
GROUP BY SUBSTR(TO\_CHAR(first\_time, 'MM/DD/RR HH:MI:SS'),1,5),THREAD#
ORDER BY id,SUBSTR(TO\_CHAR(first\_time, 'MM/DD/RR HH:MI:SS'),1,5)
/
代表12月19号,H20(20-21时),共切换24个归档日志,如果每一个500M,那么总共约500M*24,对比其余时间,可以说该时间产生异常的归档日志,目标排查改时间段
2.3 SQL语句判断
with aa as
(SELECT IID,
USERNAME,
to\_char(BEGIN\_TIME,'mm/dd hh24:mi') begin\_time,
SQL\_ID,
decode(COMMAND\_TYPE,3,'SELECT',2,'INSERT',6,'UPDATE',7,'DELETE',189,'MERGE INTO','OTH') "SQL\_TYPE",
executions "EXEC\_NUM",
rows\_processed "Change\_NUM"
FROM (SELECT s.INSTANCE\_NUMBER IID,
PARSING\_SCHEMA\_NAME USERNAME,COMMAND\_TYPE,
cast(BEGIN\_INTERVAL\_TIME as date) BEGIN\_TIME,
s.SQL\_ID,
executions\_DELTA executions,
rows\_processed\_DELTA rows\_processed,
(IOWAIT\_DELTA) /
1000000 io\_time,
100*ratio\_to\_report(rows\_processed\_DELTA) over(partition by s.INSTANCE\_NUMBER, BEGIN\_INTERVAL\_TIME) RATIO,
sum(rows\_processed\_DELTA) over(partition by s.INSTANCE\_NUMBER, BEGIN\_INTERVAL\_TIME) totetime,
elapsed\_time\_DELTA / 1000000 ETIME,
CPU\_TIME\_DELTA / 1000000 CPU\_TIME,
(CLWAIT\_DELTA+APWAIT\_DELTA+CCWAIT\_DELTA+PLSEXEC\_TIME\_DELTA+JAVEXEC\_TIME\_DELTA)/1000000 OTIME,
row\_number() over(partition by s.INSTANCE\_NUMBER,BEGIN\_INTERVAL\_TIME order by rows\_processed\_DELTA desc) TOP\_D
FROM dba\_hist\_sqlstat s, dba\_hist\_snapshot sn,dba\_hist\_sqltext s2
where s.snap\_id = sn.snap\_id
and s.INSTANCE\_NUMBER = sn.INSTANCE\_NUMBER
and rows\_processed\_DELTA is not null
and s.sql\_id = s2.sql\_id and COMMAND\_TYPE in (2,6,7,189)
and sn.BEGIN\_INTERVAL\_TIME > sysdate - nvl(180,1)/1440 and PARSING\_SCHEMA\_NAME<>'SYS')
WHERE TOP\_D <= nvl(20,1)
)
select aa.*,s.sql\_fulltext "FULL\_SQL" from aa left join v$sql s on aa.sql\_id=s.sql\_id ORDER BY IID, BEGIN\_TIME desc,"Change\_NUM" desc
查看2小时的数据该变量,可以看出Change\_NUM数据该变量和执行次数EXEC\_NUM和SQL语句,update回滚了,所以没有该变量。
此时可以判断大量插入数据导致归档日志暴增,此时并不能判断update。此语句不一定有数据,只能做参考。
2.4 AWR
创建AWR报告
创建AWR报告
@?/rdbms/admin/awrrpt.sql
SQL> @?/rdbms/admin/awrrpt.sql
Current Instance
~~~~~~~~~~~~~~~~
DB Id DB Name Inst Num Instance
----------- ------------ -------- ------------
3830097027 ..... 1 .....
Specify the Report Type
~~~~~~~~~~~~~~~~~~~~~~~
Would you like an HTML report, or a plain text report?
Enter 'html' for an HTML report, or 'text' for plain text
Defaults to 'html'
Enter value for report\_type: html
Type Specified: html
Instances in this Workload Repository schema
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
DB Id Inst Num DB Name Instance Host
------------ -------- ------------ ------------ ------------
* 3830097027 1 ..... ..... dbserver01
Using 3830097027 for database Id
Using 1 for instance number
Specify the number of days of snapshots to choose from
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Entering the number of days (n) will result in the most recent
(n) days of snapshots being listed. Pressing without
specifying a number lists all completed snapshots.
Enter value for num\_days: 1
Listing the last day's Completed Snapshots
Snap
Instance DB Name Snap Id Snap Started Level
------------ ------------ --------- ------------------ -----
..... ..... 36 19 Dec 2021 14:03 1
37 19 Dec 2021 15:00 1
38 19 Dec 2021 16:00 1
39 19 Dec 2021 17:00 1
40 19 Dec 2021 18:00 1
41 19 Dec 2021 20:12 1
42 19 Dec 2021 21:03 1
Specify the Begin and End Snapshot Ids
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Enter value for begin\_snap: 41
Begin Snapshot Id specified: 41
Enter value for end\_snap: 42
End Snapshot Id specified: 42
Specify the Report Name
~~~~~~~~~~~~~~~~~~~~~~~
The default report file name is awrrpt\_1\_41\_42.html. To use this name,
press to continue, otherwise enter an alternative.
Enter value for report\_name: /tmp/awrrpt\_1\_41\_42.html
解析AWR报告
可以看出大量redo,该时间段总该变量3762494/1024/1024=3674,每秒约产生3.5M
产生块最多的是scott用户,object对象,改变量是44684992,占比99%,说明是该对象产生的
根据对象可以在AWR报告中查看是否有怀疑的SQL,发现update语句。
其实根据SQL语句和AWR报告可以排查出大部分归档日志暴增的问题,如果无法排查可以继续进行挖掘归档日志。
2.5 挖掘归档日志
-rw-r-----. 1 oracle oinstall 794697216 Dec 19 20:37 1\_66\_1077902149.dbf
-rw-r-----. 1 oracle oinstall 794697216 Dec 19 20:37 1\_67\_1077902149.dbf
-rw-r-----. 1 oracle oinstall 794697216 Dec 19 21:03 1\_68\_1077902149.dbf
-rw-r-----. 1 oracle oinstall 733794304 Dec 19 21:03 1\_69\_1077902149.dbf
-rw-r-----. 1 oracle oinstall 756531200 Dec 19 21:03 1\_70\_1077902149.dbf
-rw-r-----. 1 oracle oinstall 761492480 Dec 19 21:14 1\_71\_1077902149.dbf
-rw-r-----. 1 oracle oinstall 794697216 Dec 19 21:14 1\_72\_1077902149.dbf
-rw-r-----. 1 oracle oinstall 265107968 Dec 19 21:14 1\_73\_1077902149.dbf
-- 最好sys或相关权限的用户,也可以使用toad工具
-- 第一次
@?/rdbms/admin/dbmslm.sql
@?/rdbms/admin/dbmslmd.sql
-- 开始执行
execute dbms\_logmnr.add\_logfile(logfilename=>'../../1\_66\_1077902149.dbf',options=>dbms\_logmnr.new);
execute dbms\_logmnr.add\_logfile(logfilename=>'../../1\_67\_1077902149.dbf',options=>dbms\_logmnr.new);
execute dbms\_logmnr.add\_logfile(logfilename=>'../../1\_68\_1077902149.dbf',options=>dbms\_logmnr.new);
execute dbms\_logmnr.add\_logfile(logfilename=>'../../1\_69\_1077902149.dbf',options=>dbms\_logmnr.new);
execute dbms\_logmnr.add\_logfile(logfilename=>'../../1\_70\_1077902149.dbf',options=>dbms\_logmnr.new);
execute dbms\_logmnr.start\_logmnr(options=>dbms\_logmnr.dict\_from\_online\_catalog);
-- 依次类推小批量解析归档日志
-- 保存记录
create table scott.logmnr\_contents as select * from v$logmnr\_contents;
-- 分批执行...循环执行上面记录
alter session set nls\_date\_format='yyyy-mm-dd hh24:mi:ss';
-- 最后释放pga
execute dbms\_logmnr.end\_logmnr;
select sql\_redo from scott.logmnr\_contents where table\_name='OBJECT';
select count(*) from scott.logmnr\_contents where table\_name='OBJECT';
可以从归档日志中查看大量的update语句,此时基本可以排查出归档日志暴增原因
回到顶部## 2.6 归档日志暴增优化
1.delete是否可以改造成truncate分区表(ps: truncate需谨慎,无法恢复相关数据)
2.dml可以适量使用临时表
3.避免大事务
4.避免大量for循环dml
-
- 1.1 归档日志是什么
- 1.2 归档日志存储的是什么
- 1.3 归档日志暴增的原因
- 1.4 排查归档日志暴增的方法
- 2、归档日志暴增排查实战
- 2.1 制造归档日志暴增
- 2.2 查看归档日志切换
- 2.3 SQL语句判断
- 2.4 AWR
- 2.5 挖掘归档日志
- 2.6 归档日志暴增优化
__EOF__
lei.z - 本文链接: https://blog.csdn.net/lei-z/p/16467177.html
转载请注明:xuhss » Oracle归档日志暴增排查优化