? 优质资源分享 ?
学习路线指引(点击解锁) | 知识定位 | 人群定位 |
---|---|---|
? Python实战微信订餐小程序 ? | 进阶级 | 本课程是python flask+微信小程序的完美结合,从项目搭建到腾讯云部署上线,打造一个全栈订餐系统。 |
?Python量化交易实战? | 入门级 | 手把手带你打造一个易扩展、更安全、效率更高的量化交易系统 |
零除的处理
用NULLIF(col, 0)
可以避免复杂的WHEN...CASE
判断, 例如
ROUND(COUNT(view_50.amount_in)::NUMERIC / NULLIF(COUNT(view_50.amount_out)::NUMERIC, 0),2) AS out_divide_in,
使用 COLA / NULLIF(COLB,0)
后, 如果 COLB 为0, 产生的输出就是 NULL
GENERATED 字段, GENERATED..STORED
对于读多写少的表, 这是一个高效的性能提升方法, 对已知表可以增加Generated字段, 这些字段只读, 自动计算赋值, 可以像普通字段一样参与查询, 不需要在查询中实时计算, 是一种典型的使用空间换时间的优化方式.
ALTER TABLE "bank_card"
ADD COLUMN "card_num_in" varchar(255) GENERATED ALWAYS AS (CASE WHEN direction = 'IN' THEN card_num ELSE NULL END) STORED,
ADD COLUMN "card_num_out" varchar(255) GENERATED ALWAYS AS (CASE WHEN direction = 'OUT' THEN card_num ELSE NULL END) STORED,
ADD COLUMN "amount_in" numeric(53,2) GENERATED ALWAYS AS (CASE WHEN direction = 'IN' THEN amount ELSE NULL END) STORED,
ADD COLUMN "amount_out" numeric(53,2) GENERATED ALWAYS AS (CASE WHEN direction = 'OUT' THEN amount ELSE NULL END) STORED;
注意
- PostgreSQL 14 只有 STORED 类型的字段, 还不能使用 VIRTUAL 类型
- 这样的字段是只读的, INSERT 的时候不能往这些字段写入
- GENERATED 字段不带索引, 如果基于带索引的字段创建 GENERATED 字段, 在 GENERATED 字段上检索, 性能可能反而更差, 可以通过给 GENERATED 字段建索引解决.
COUNT DISTINCT 优化
COUNT DISTINCT 的性能问题
COUNT DISTINCT 的性能是PostgreSQL中长期存在的问题, 在版本14中尚未解决. 在数据量大的时候, 这个查询会很慢, 千万级别的表可能需要10秒左右才能返回结果
SELECT
COUNT(DISTINCT field_1)
FROM
table_1
原因链接
count(distinct ...) always sorts, rather than using a hash, to do its work. I don't think that there is any fundamental reason that it could not be changed to allow it to use hashing, it just hasn't been done yet. It is complicated by the fact that you can have multiple count() expressions in the same query which demand sorting/grouping on different columns.
PostgreSQL 的 count(distinct ...) 的实现方式是排序而不是使用 hash, 所以速度很慢. 应该要换成 hash 方式, 只是因为各种原因还没有实现.
规避途径一: 通过 COUNT 子查询
使用下面的方式, 查询时间能缩短一半以上
SELECT
COUNT(col)
FROM (
SELECT DISTINCT field_1 AS col FROM table_1
) TEMP
规避途径二: 通过 COUNT_DISTINCT 扩展
针对这个性能问题的扩展 count_distinct, 安装之后可以使用COUNT_DISTINCT()
函数代替COUNT(DISTINCT ...), 但是缺点是费内存, 而且对参数有长度限制.
规避途径三: 通过 GROUP BY
使用GROUP BY
代替DISTINCT
, 下面的例子, 对 field_1 和 field_2 建联合索引, 速度会非常快
SELECT COUNT(field_2), field_1, field_2
FROM table_1
GROUP BY field_1, field_2
对于复杂场景, 可以对 GROUP BY 之后的结果建立视图, 而后以子查询的形式取值
优化JOIN性能
JOIN
查询, 需要限定JOIN的范围, 例如对于一个翻页查询, 需要对翻页的结果通过JOIN挂接大量属性的, 翻页结果通过LEFT JOIN
连接到多个属性表, 就应该将翻页结果限制数量后, 再进行关联, 这样性能会好很多, 例如
Preparing : SELECT
"view_46"."id",
"view_46"."name",
"label_view6"."labels" AS "1___label",
"label_view7"."labels" AS "21022___label",
"label_view8"."labels" AS "21023___label",
"label_view9"."labels" AS "50197___label"
FROM
-- 这行是关键, 因为主体在ID上有索引, 偏移查询是很快的, 先限制结果集大小, 然后再进行JOIN
( SELECT * FROM "view_46" ORDER BY ID ASC LIMIT 10 OFFSET 14270 ) AS "view_46"
LEFT JOIN "label_view" AS "label_view6" ON (
"label_view6"."item_type" = '1'
AND "label_view6"."item_name" = '1'
AND "label_view6"."item_attr" = '2'
AND "label_view6"."item_id" = "view_46"."id" :: TEXT
)
LEFT JOIN "label_view" AS "label_view7" ON (
"label_view7"."item_type" = '1'
AND "label_view7"."item_name" = '21022'
AND "label_view7"."item_attr" = '2'
AND "label_view7"."item_id" = "view_46"."id" :: TEXT
)
LEFT JOIN "label_view" AS "label_view8" ON (
"label_view8"."item_type" = '1'
AND "label_view8"."item_name" = '21023'
AND "label_view8"."item_attr" = '2'
AND "label_view8"."item_id" = "view_46"."id" :: TEXT
)
LEFT JOIN "label_view" AS "label_view9" ON (
"label_view9"."item_type" = '1'
AND "label_view9"."item_name" = '50197'
AND "label_view9"."item_attr" = '2'
AND "label_view9"."item_id" = "view_46"."id" :: TEXT
)
ORDER BY
ID ASC
LIKE ARRAY的用法
PostgreSQl 的LIKE用法
LIKE
LIKE
NOT LIKE
LIKE ANY(ARRAY[])
如果需要相似任意一个参数, 需要使用这个语法NOT LIKE ALL(ARRAY[])
如果想达到不相似任意一个参数, 需要用这个语法
ILIKE
ILIKE是不区分大小写的LIKE
ILIKE
NOT ILIKE
ILIKE ANY(ARRAY[])
NOT ILIKE ALL(ARRAY[])
转载请注明:xuhss » PostgreSQL的查询技巧: 零除, GENERATED STORED, COUNT DISTINCT, JOIN和数组LIKE