文章目录
显示
创建含 NaN 的矩阵
有时候我们导入或处理数据, 会产生一些空的或者是 NaN
数据,如何删除或者是填补这些 NaN
数据就是我们今天所要提到的内容.
建立了一个6X4的矩阵数据并且把两个位置置为空.
dates = pd.date_range('20130101', periods=6)
df = pd.DataFrame(np.arange(24).reshape((6,4)),index=dates, columns=['A','B','C','D'])
df.iloc[0,1] = np.nan
df.iloc[1,2] = np.nan
"""
A B C D
2013-01-01 0 NaN 2.0 3
2013-01-02 4 5.0 NaN 7
2013-01-03 8 9.0 10.0 11
2013-01-04 12 13.0 14.0 15
2013-01-05 16 17.0 18.0 19
2013-01-06 20 21.0 22.0 23
"""
pd.dropna()
如果想直接去掉有 NaN
的行或列, 可以使用 dropna
df.dropna(
axis=0, # 0: 对行进行操作; 1: 对列进行操作
how='any' # 'any': 只要存在 NaN 就 drop 掉; 'all': 必须全部是 NaN 才 drop
)
"""
A B C D
2013-01-03 8 9.0 10.0 11
2013-01-04 12 13.0 14.0 15
2013-01-05 16 17.0 18.0 19
2013-01-06 20 21.0 22.0 23
"""
pd.fillna()
如果是将 NaN
的值用其他值代替, 比如代替成 0
:
df.fillna(value=0)
"""
A B C D
2013-01-01 0 0.0 2.0 3
2013-01-02 4 5.0 0.0 7
2013-01-03 8 9.0 10.0 11
2013-01-04 12 13.0 14.0 15
2013-01-05 16 17.0 18.0 19
2013-01-06 20 21.0 22.0 23
"""
pd.isnull()
判断是否有缺失数据 NaN
, 为 True
表示缺失数据:
df.isnull()
"""
A B C D
2013-01-01 False True False False
2013-01-02 False False True False
2013-01-03 False False False False
2013-01-04 False False False False
2013-01-05 False False False False
2013-01-06 False False False False
"""
检测在数据中是否存在 NaN
, 如果存在就返回 True
:
np.any(df.isnull()) == True
# True
下次课会将pandas如何导入导出数据的过程。
转载请注明:xuhss » Pandas 处理丢失数据