文章目录
显示
要点
pandas
处理多组数据的时候往往会要用到数据的合并处理,使用 concat
是一种基本的合并方式.而且concat
中有很多参数可以调整,合并成你想要的数据形式.
axis (合并方向)
axis=0
是预设值,因此未设定任何参数时,函数默认axis=0
。
import pandas as pd
import numpy as np
#定义资料集
df1 = pd.DataFrame(np.ones((3,4))*0, columns=['a','b','c','d'])
df2 = pd.DataFrame(np.ones((3,4))*1, columns=['a','b','c','d'])
df3 = pd.DataFrame(np.ones((3,4))*2, columns=['a','b','c','d'])
#concat纵向合并
res = pd.concat([df1, df2, df3], axis=0)
#打印结果
print(res)
# a b c d
# 0 0.0 0.0 0.0 0.0
# 1 0.0 0.0 0.0 0.0
# 2 0.0 0.0 0.0 0.0
# 0 1.0 1.0 1.0 1.0
# 1 1.0 1.0 1.0 1.0
# 2 1.0 1.0 1.0 1.0
# 0 2.0 2.0 2.0 2.0
# 1 2.0 2.0 2.0 2.0
# 2 2.0 2.0 2.0 2.0
仔细观察会发现结果的index
是0, 1, 2, 0, 1, 2, 0, 1, 2,若要将index
重置,请看例子二。
ignore_index (重置 index)
#承上一个例子,并将index_ignore设定为True
res = pd.concat([df1, df2, df3], axis=0, ignore_index=True)
#打印结果
print(res)
# a b c d
# 0 0.0 0.0 0.0 0.0
# 1 0.0 0.0 0.0 0.0
# 2 0.0 0.0 0.0 0.0
# 3 1.0 1.0 1.0 1.0
# 4 1.0 1.0 1.0 1.0
# 5 1.0 1.0 1.0 1.0
# 6 2.0 2.0 2.0 2.0
# 7 2.0 2.0 2.0 2.0
# 8 2.0 2.0 2.0 2.0
结果的index
变0, 1, 2, 3, 4, 5, 6, 7, 8。
join (合并方式)
join='outer'
为预设值,因此未设定任何参数时,函数默认join='outer'
。此方式是依照column
来做纵向合并,有相同的column
上下合并在一起,其他独自的column
个自成列,原本没有值的位置皆以NaN
填充。
import pandas as pd
import numpy as np
#定义资料集
df1 = pd.DataFrame(np.ones((3,4))*0, columns=['a','b','c','d'], index=[1,2,3])
df2 = pd.DataFrame(np.ones((3,4))*1, columns=['b','c','d','e'], index=[2,3,4])
#纵向"外"合并df1与df2
res = pd.concat([df1, df2], axis=0, join='outer')
print(res)
# a b c d e
# 1 0.0 0.0 0.0 0.0 NaN
# 2 0.0 0.0 0.0 0.0 NaN
# 3 0.0 0.0 0.0 0.0 NaN
# 2 NaN 1.0 1.0 1.0 1.0
# 3 NaN 1.0 1.0 1.0 1.0
# 4 NaN 1.0 1.0 1.0 1.0
原理同上个例子的说明,但只有相同的column
合并在一起,其他的会被抛弃。
#承上一个例子
#纵向"内"合并df1与df2
res = pd.concat([df1, df2], axis=0, join='inner')
#打印结果
print(res)
# b c d
# 1 0.0 0.0 0.0
# 2 0.0 0.0 0.0
# 3 0.0 0.0 0.0
# 2 1.0 1.0 1.0
# 3 1.0 1.0 1.0
# 4 1.0 1.0 1.0
#重置index并打印结果
res = pd.concat([df1, df2], axis=0, join='inner', ignore_index=True)
print(res)
# b c d
# 0 0.0 0.0 0.0
# 1 0.0 0.0 0.0
# 2 0.0 0.0 0.0
# 3 1.0 1.0 1.0
# 4 1.0 1.0 1.0
# 5 1.0 1.0 1.0
join_axes (依照 axes 合并)
import pandas as pd
import numpy as np
#定义资料集
df1 = pd.DataFrame(np.ones((3,4))*0, columns=['a','b','c','d'], index=[1,2,3])
df2 = pd.DataFrame(np.ones((3,4))*1, columns=['b','c','d','e'], index=[2,3,4])
#依照`df1.index`进行横向合并
res = pd.concat([df1, df2], axis=1, join_axes=[df1.index])
#打印结果
print(res)
# a b c d b c d e
# 1 0.0 0.0 0.0 0.0 NaN NaN NaN NaN
# 2 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
# 3 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
#移除join_axes,并打印结果
res = pd.concat([df1, df2], axis=1)
print(res)
# a b c d b c d e
# 1 0.0 0.0 0.0 0.0 NaN NaN NaN NaN
# 2 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
# 3 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
# 4 NaN NaN NaN NaN 1.0 1.0 1.0 1.0
append (添加数据)
append
只有纵向合并,没有横向合并。
import pandas as pd
import numpy as np
#定义资料集
df1 = pd.DataFrame(np.ones((3,4))*0, columns=['a','b','c','d'])
df2 = pd.DataFrame(np.ones((3,4))*1, columns=['a','b','c','d'])
df3 = pd.DataFrame(np.ones((3,4))*1, columns=['a','b','c','d'])
s1 = pd.Series([1,2,3,4], index=['a','b','c','d'])
#将df2合并到df1的下面,以及重置index,并打印出结果
res = df1.append(df2, ignore_index=True)
print(res)
# a b c d
# 0 0.0 0.0 0.0 0.0
# 1 0.0 0.0 0.0 0.0
# 2 0.0 0.0 0.0 0.0
# 3 1.0 1.0 1.0 1.0
# 4 1.0 1.0 1.0 1.0
# 5 1.0 1.0 1.0 1.0
#合并多个df,将df2与df3合并至df1的下面,以及重置index,并打印出结果
res = df1.append([df2, df3], ignore_index=True)
print(res)
# a b c d
# 0 0.0 0.0 0.0 0.0
# 1 0.0 0.0 0.0 0.0
# 2 0.0 0.0 0.0 0.0
# 3 1.0 1.0 1.0 1.0
# 4 1.0 1.0 1.0 1.0
# 5 1.0 1.0 1.0 1.0
# 6 1.0 1.0 1.0 1.0
# 7 1.0 1.0 1.0 1.0
# 8 1.0 1.0 1.0 1.0
#合并series,将s1合并至df1,以及重置index,并打印出结果
res = df1.append(s1, ignore_index=True)
print(res)
# a b c d
# 0 0.0 0.0 0.0 0.0
# 1 0.0 0.0 0.0 0.0
# 2 0.0 0.0 0.0 0.0
# 3 1.0 2.0 3.0 4.0
转载请注明:xuhss » Pandas 合并 concat