Python微信订餐小程序课程视频
https://edu.csdn.net/course/detail/36074
Python实战量化交易理财系统
https://edu.csdn.net/course/detail/35475
定义
在一幅无向图 G=(V,E)G=(V,E)G=(V,E) 中,(u,v)(u,v)(u, v) 为连接顶点 uuu 和顶点 vvv 的边,w(u,v)w(u,v)w(u,v) 为边的权重,若存在边的子集 T⊆ET⊆ET\subseteq E 且 (V,T)(V,T)(V,T) 为树,使得
w(T)=∑(u,v)∈Tw(u,v)w(T)=∑(u,v)∈Tw(u,v)w(T)=\sum_{(u,v)\in T}w(u,v)
最小,这称 TTT 为图 GGG 的最小生成树。
说的通俗点,最小生成树就是带权无向图中权值和最小的树。下图中黑色边所标识的就是一棵最小生成树(图片来自《算法第四版》),对于权值各不相同的连通图来说最小生成树只会有一棵:
带权图的实现
在 《如何在 Java 中实现无向图》 中我们使用邻接表数组实现了无向图,其中邻接表上的每个节点的数据域只是一个整数,代表着一个顶点。为了方便最小生成树的迭代,我们将数据域换成 Edge
实例。Edge
有三个成员:顶点 v
、顶点 w
和权重 weight
,为了比较每一条边的权重,需要实现 Comparable
接口。代码如下所示:
复制package com.zhiyiyo.graph;
/**
* 图中的边
*/
public class Edge implements Comparable {
private final int v, w;
private final double weight;
public Edge(int v, int w, double weight) {
this.v = v;
this.w = w;
this.weight = weight;
}
/**
* 返回边中的一个顶点
*/
int either() {
return v;
}
/**
* 返回边中的拎一个顶点
*
* @param v 顶点 v
* @return 另一个顶点
*/
int another(int v) {
if (this.v == v) {
return w;
} else if (w == v) {
return this.v;
} else {
throw new RuntimeException("边中不存在该顶点");
}
}
public double getWeight() {
return weight;
}
@Override
public String toString() {
return String.format("Edge{%d-%d %f}", v, w, weight);
}
@Override
public int compareTo(Edge edge) {
return Double.compare(weight, edge.weight);
}
}
之后只要照猫画虎,将 LinkGraph
的泛型从 Integer
换成 Edge
就行了:
复制package com.zhiyiyo.graph;
import com.zhiyiyo.collection.stack.LinkStack;
import com.zhiyiyo.collection.stack.Stack;
/**
* 带权无向图
*/
public class WeightedGraph {
private final int V;
protected int E;
protected LinkStack[] adj;
public WeightedGraph(int V) {
this.V = V;
adj = (LinkStack[]) new LinkStack[V];
for (int i = 0; i < V; i++) {
adj[i] = new LinkStack<>();
}
}
public int V() {
return V;
}
public int E() {
return E;
}
public void addEdge(Edge edge) {
int v = edge.either();
int w = edge.another(v);
adj[v].push(edge);
adj[w].push(edge);
E++;
}
public Iterable adj(int v) {
return adj[v];
}
/**
* 获取所有边
*/
public Iterable edges() {
Stack edges = new LinkStack<>();
for (int v = 0; v < V; ++v) {
for (Edge edge : adj(v)) {
if (edge.another(v) > v) {
edges.push(edge);
}
}
}
return edges;
}
}
同时给出最小生成树的 API:
复制package com.zhiyiyo.graph;
/**
* 最小生成树
*/
public interface MST {
/**
* 获取最小生成树中的所有边
*/
Iterable edges();
/**
* 获取最小生成树的权重
*/
double weight();
}
Kruskal 算法
假设 EEE 是图 GGG 中所有边的集合,TTT 是最小生成树的边集合,kruskal 算法的思想是每次从 EEE 中弹出权值最小的边 ememe_m,如果 ememe_m 不会和 TTT 中的边构成环,就将其加入 TTT 中,直到 |T|=|V|−1|T|=|V|−1|T|=|V|-1 也就是 TTT 中边的个数是图 GGG 的顶点个数 -1 时,就得到了最小生成树。
对于上一幅图,使用 kruskal 算法得到最小生成树的过程如下图所示:
首先将 EEE 中最小的边 0-7 弹出并加到 TTT 中,此时的 EEE 中最小边为 2-3,虽然 2-3 和 0-7 无法构成连通图,但是没关系,只要贪心地将其加入 TTT 中即可,因为后续其他边的添加总会将二者连通起来。接着按照权值的升序依次把边 1-7、0-2、5-7 加到 TTT 中,直到碰到边 1-3,如果把 1-3 加入 TTT 中,就会出现环 1-3-2-0-7-1,所以直接将 1-3 舍弃,1-5、2-7 也同理被丢弃掉。由于边 4-5 不会在 TTT 中构成环,所以将其加入 TTT。重复上述步骤,直到 |T|=|V|−1|T|=|V|−1|T|=|V|-1。
上述过程中有两个影响性能的地方,一个是找出 EEE 中权值最小的边 ememe_m,一个是判断将 ememe_m 加到 TTT 中是否会出现环。
二叉堆
二叉堆是一棵完全二叉树,且每个父节点总是大于等于(最大堆)或者小于等于(最小堆)他的子节点。《算法第四版》中给出了使用数组存储的最大堆的结构,其中数组下标为 0 的地方不存储元素,假设下标为 iii 出存放的是父节点,那么 2i2i2i 和 2i+12i+12i+1 处就是子节点:
由于最小堆的堆顶节点总是最小的,所以只需将 EEE 变为一个最小堆,每次取出堆顶的元素即可,时间复杂度为 O(logN)O(logN)O(\log N)。下面来看下如何实现最小堆。
API
对于一个二叉堆,我们关心以下操作:
复制package com.zhiyiyo.collection.queue;
public interface PriorQueueextends Comparable> {
/**
* 向堆中插入一个元素
* @param item 插入的元素
*/
void insert(T item);
/**
* 弹出堆顶的元素
* @return 堆顶元素
*/
T pop();
/**
* 获取堆中的元素个数
*/
int size();
/**
* 堆是否为空
*/
boolean isEmpty();
}
插入
为了保证二叉堆是一棵完全二叉树,每次都将新节点插到数组的末尾,也就是二叉树的最后一个节点。如下图所示,假设插入的节点为 A,它的父节点为 P,兄弟节点为 S,由于 P > A,这就打破了二叉堆的有序性,所以需要对堆进行调整。具体流程就是将兄弟节点中的较小者(A)选为父节点,而先前的父节点 P 则退位变为子节点。如果此时 A 的父节点小于 A,则无需继续调整。但是下图中只交换了 A、P 之后还是没将二叉树调整为堆有序状态,因为父节点 D > A,接着将兄弟节点中较小的 A 变为父节点,而 D 则变成 A 的子节点,至此完成最小堆的调整。
上述过程的代码如下所示,为了保证后续插入操作,每当数组满员时就对其进行扩容操作:
复制package com.zhiyiyo.collection.queue;
import java.util.Arrays;
public class MinPriorQueueextends Comparable> implements PriorQueue{
private T[] array;
private int N;
public MinPriorQueue() {
this(3);
}
public MinPriorQueue(int maxSize) {
array = (T[]) new Comparable[maxSize + 1];
}
@Override
public boolean isEmpty() {
return N == 0;
}
@Override
public int size() {
return N;
}
@Override
public void insert(T item) {
array[++N] = item;
swim(N);
if (N == array.length - 1) resize(1 + 2 * N);
}
/**
* 元素上浮
*
* @param k 元素的索引
*/
private void swim(int k) {
while (k > 1 && less(k, k / 2)) {
swap(k, k / 2);
k /= 2;
}
}
private void swap(int a, int b) {
T tmp = array[a];
array[a] = array[b];
array[b] = tmp;
}
private boolean less(int a, int b) {
return array[a].compareTo(array[b]) < 0;
}
private void resize(int size) {
array = Arrays.copyOf(array, size);
}
}
删除最小元素
假设我们需要删除下图中的 A 元素,这时候就需要将 A 和最小堆的最后一个元素 P 交换位置,并将数组的最后一个元素置为 null
,使得 A 的引用次数变为 0,能被垃圾回收机制自动回收掉。交换之后最小堆的有序性被破坏了,因为父节点 P > 子节点 D,这时候和插入元素的操作一样,将较小的子节点和父节点交换位置,使得较大的父节点能够下沉,而较小的子节点上位,这个过程持续到没有子节点被 P 更小为止。
实现代码如下:
复制@Override
public T pop() {
T item = array[1];
swap(1, N);
array[N--] = null;
sink(1);
if (N < (array.length - 1) / 4) resize((array.length - 1) / 2);
return item;
}
/**
* 元素下沉
*
* @param k 元素的索引
*/
private void sink(int k) {
while (2 * k <= N) {
int j = 2 * k;
// 检查是否有两个子节点
if (j < N && less(j + 1, j)) j++;
if (less(k, j)) break;
swap(k, j);
k = j;
}
}
并查集
假设 TTT 中的顶点的集合为 V′V′V',则有图 G′=(V′,T)G′=(V′,T)G'=(V', T)。我们可以将 G′G′G' 划分为 nnn 个连通分量,每个连通分量有一个标识 id∈[0,n−1]id∈[0,n−1]id\in [0, n-1]。要想判断将边 ememe_m 加入 TTT 后是否会构成环,只需判断 ememe_m 的两个顶点是都属于同一个连通分量即可。
判断是否连通
由于每个连通分量都不存在环,可以看作一棵小树,所以可以用一个数组 int[] ids
的索引表示树中的节点(图中的顶点),而索引处的元素值为父节点的索引值,数组中 ids[i] == i
的位置就是每棵树的根节点,i
就是这个连通分量的标识。而我们想要知道两个节点之间是否连通,只需判断他们所属的树的根节点是否相同即可。
假设从树底的叶节点 6 出发,一路向上直到树顶 1,中间需要经过 5 和 0 两个节点,如果节点 6 的根节点查询得比较频繁,那么这种查找效率是比较低的。由于我们只需知道根节点是谁即可,树的结构无关紧要,那么为何不想个办法把节点 5、6 直接挂到根节点 1,这样只要一步就能知道根节点。实现这种想法的的方式就是路径压缩:当从节点 6 走到父节点 5 时,就将节点 6 挂到节点 5 的父节点 0 上;而从节点 0 走到根节点 1 时,就将子节点 6 和 5 挂到根节点 1 下,树高被压缩为 1。
实现上述过程的代码如下所示:
复制package com.zhiyiyo.collection.tree;
public class UnionFind {
private int[] ids;
private int[] ranks; // 每棵树的高度
private int N; // 树的数量
public UnionFind(int N) {
this.N = N;
ids = new int[N];
ranks = new int[N];
for (int i = 0; i < N; i++) {
ids[i] = i;
ranks[i] = 1;
}
}
/**
* 获取连通分量个数
*
* @return 连通分量个数
*/
public int count() {
return N;
}
/**
* 获得连通分量的 id
*
* @param p 触点 id
* @return 连通分量 id
*/
public int find(int p) {
while (p != ids[p]) {
ids[p] = ids[ids[p]]; // 路径压缩
p = ids[p];
}
return p;
}
/**
* 判断两个触点是否连通
*
* @param p 触点 p 的 id
* @param q 触点 q 的 id
* @return 是否连通
*/
public boolean isConnected(int p, int q) {
return find(p) == find(q);
}
}
合并连通分量
我们将 EEE 中的 ememe_m 添加到 TTT 中时,ememe_m 的两个节点肯定分属于两个连通分量,加入 TTT 之后就需要将这两个分量合并,也就是将两棵小树合并为一颗大树。假设两棵树的高度分别为 h1h1h_1 和 h2h2h_2,如果直接将一颗树的根节点接到另一棵树的叶节点上,会导致新树高度为 h1+h2h1+h2h_1+h_2,降低寻找根节点的效率。解决方式是按秩归并,将矮树的根节点接到高树的根节点上,会出现两种情况:
- 如果 h1≠h2h1≠h2h_1 \neq h_2,新树高度会是 max{h1,h2}max{h1,h2}\max{h_1, h_2}
- 如果 h1=h2=ch1=h2=ch_1=h_2=c,新树高度会是 c+1c+1c+1
上述过程的代码如下所示:
复制/**
* 如果两个触点不处于同一个连通分量中,则连接两个触点
*
* @param p 触点 p 的 id
* @param q 触点 q 的 id
*/
public void union(int p, int q) {
int pId = find(p);
int qId = find(q);
if (qId == pId) return;
// 将小树并到大树
if (ranks[qId] > ranks[pId]) {
ids[pId] = qId;
} else if (ranks[qId] < ranks[pId]) {
ids[qId] = pId;
} else {
ids[qId] = pId;
ranks[pId]++;
}
N--;
}
实现算法
实现 kruskal 算法时,先将所有边加入最小堆中,每次取出堆顶的元素 ememe_m,然后使用并查集判断边的两个顶点是否连通,如果不连通就将 ememe_m 加入 TTT,重复这个过程直至 |T|=|V|−1|T|=|V|−1|T|=|V|-1,时间复杂度为 O(|E|log|E|)O(|E|log|E|)O(|E|\log |E|)。
复制package com.zhiyiyo.graph;
import com.zhiyiyo.collection.queue.LinkQueue;
import com.zhiyiyo.collection.queue.MinPriorQueue;
import com.zhiyiyo.collection.queue.Queue;
import com.zhiyiyo.collection.tree.UnionFind;
import java.util.stream.Stream;
import java.util.stream.StreamSupport;
public class KruskalMST implements MST {
private Queue mst;
public KruskalMST(WeightedGraph graph) {
mst = new LinkQueue<>();
UnionFind uf = new UnionFind(graph.V());
MinPriorQueue pq = new MinPriorQueue<>();
for (Edge e : graph.edges()) {
pq.insert(e);
}
while (mst.size() < graph.V() - 1 && !pq.isEmpty()) {
Edge edge = pq.pop();
int v = edge.either();
int w = edge.another(v);
if (!uf.isConnected(v, w)) {
mst.enqueue(edge);
uf.union(v, w);
}
}
}
@Override
public Iterable edges() {
return mst;
}
@Override
public double weight() {
Stream stream = StreamSupport.stream(mst.spliterator(), false);
return stream.map(Edge::getWeight).reduce(0d, Double::sum);
}
}
Prim 算法
Prim 算法的思想是初始化最小生成树为一个根节点 0,然后将根节点的所有邻边加入最小堆中,从最小堆中弹出最小的边 ememe_m,如果 ememe_m 不会使得树中出现环,将将其并入树中。每当有新的节点 vvv 被并入树中时,就得将 vvv 的所有邻边加入最小堆中。重复上述过程直到 |T|=|V|−1|T|=|V|−1|T|=|V|-1,时间复杂度为 O(|E|log|E|)O(|E|log|E|)O(|E|\log|E|)。代码如下所示:
复制package com.zhiyiyo.graph;
import com.zhiyiyo.collection.queue.LinkQueue;
import com.zhiyiyo.collection.queue.MinPriorQueue;
import com.zhiyiyo.collection.queue.Queue;
import java.util.stream.Stream;
import java.util.stream.StreamSupport;
/**
* 延时版本 Prim 算法
*/
public class PrimMST implements MST {
private boolean[] marked;
private MinPriorQueue pq;
private Queue mst;
public LazyPrimMST(WeightedGraph graph) {
marked = new boolean[graph.V()];
pq = new MinPriorQueue<>();
mst = new LinkQueue<>();
mark(graph, 0);
while (mst.size() < graph.V() - 1 && !pq.isEmpty()) {
Edge edge = pq.pop();
int v = edge.either();
int w = edge.another(v);
// 构成环则舍弃
if (marked[v] && marked[w]) continue;
mst.enqueue(edge);
if (!marked[v]) mark(graph, v);
else if (!marked[w]) mark(graph, w);
}
}
private void mark(WeightedGraph graph, int v) {
marked[v] = true;
for (Edge edge : graph.adj(v)) {
if (!marked[edge.another(v)]) {
pq.insert(edge);
}
}
}
@Override
public Iterable edges() {
return mst;
}
@Override
public double weight() {
Stream stream = StreamSupport.stream(mst.spliterator(), false);
return stream.map(Edge::getWeight).reduce(0d, Double::sum);
}
}
由于每次都是把新节点的所有邻边都加到了最小堆中,会引入许多无用的边,所以《算法第四版》中给出了使用索引优先队列实现的即时版 Prim 算法,时间复杂度能达到 O(|E|log|V|)O(|E|log|V|)O(|E|\log |V|),但是这里写不下了,大家可以自行查阅,以上~~
转载请注明:xuhss » 如何在 Java 中实现最小生成树算法